
EKS Cost

Optimization
guide

01Page

 Introduction

 EKS Cost Optimization Best Practices

 Understand your spend

 Understand your usage

 Efficient node & pod auto-scaling

 Node Taints And Tolerations

 Container Registry & Images

 Spot Instances

 Pod Disruption Budgets

 AWS Instance Scheduler

 AWS Graviton instance

 GP3 volume

 AWS Commitment Based Discounts

 Tuning Recommendations

 Right size resources

 Summary

02Page

Introduction

Amazon’s Elastic Kubernetes Service (EKS) is a managed Kubernetes service offering that enables you

to run Kubernetes on AWS infrastructure. EKS automates management, availability and scalability of

the Kubernetes control plane, and lets you run your applications either on AWS EC2 instances or on

AWS fargate. (AZs).

As EKS adoption has grown, so has the enterprise spend on containers and Kubernetes on AWS. EKS

makes it very easy to spin up new Kubernetes clusters as well as to scale existing Kubernetes clusters.

This makes it easy to overspend on your EC2 instances. And if you don’t have a proper cost optimization

framework in place, costs can quickly escalate consuming a major portion of your overall public cloud

budget. While AWS charges a very small amount for the EKS control plane, the real cost comes from the

EC2 instances that get used as worker nodes for your clusters.

This guide will educate you on the best practices to employ as you establish a cost optimization

framework for your AWS EKS environment.

EKS has significantly grown in usage and popularity over recent years, as consumption of cloud based

Kubernetes offerings has grown recently. A study from Datadog in 2021 suggests that almost 90% of

Kubernetes users leverage cloud managed Kubernetes offerings, instead of running self managed

clusters, a 20% increase compared to the numbers in 2020.

03Page

The first and most important step in building a cost optimization strategy for your EKS environment is

getting a clear and deep visibility into your existing spend. A lack of visibility into your current spend

that is specific to your EKS clusters often contributes to an underestimation of EKS costs. Make sure

you have invested in the right tooling that gives you granular visibility into your EKS spend.

Cost Explorer will enable you to get down to the unit cost at per node and per cluster level, using their

resource type and tag based filtering mechanism. For example, you can tag all worker nodes of a specific

class of EKS clusters with a specific label, then use that label to identify the costs of those clusters. You

can then build aggregate cost reporting at cluster, team, org level.

EKS cost optimization best practices
Understand your spend

 The AWS Billing console is designed to provide visibility into the costs of

your current consumption. However, the way the AWS Billing console works, there usually is a lag

between your current usage vs the billing data because AWS Billing Console data is updated only

once a day. If you need to get more instantaneous visibility into your usage and cost data, for

example to to debug any runaway costs, you need to use better tooling.

Use AWS billing console -

 - Tools like AWS Cost Explorer are designed to give

you visibility into your EKS spend.

Use AWS cost explorer, or other paid tools

AWS Cost Explorer - Filter based on resource type and resource tags, for granular visibility

04Page

Use third party tooling

Getting an in-depth understanding of your EKS cluster resource utilization is as critical as understanding

your spend, in order to make prudent optimization decisions. With full visibility into your cluster

utilization, you can identify which clusters are the most underutilized in terms of their CPU and Memory

resources, and then start taking steps towards optimizing them.

There are two important aspects to your cluster utilization that are both critical to monitor:

Understand your usage

One limitation with the AWS Cost Explorer is that it refreshes its data at most three times in a day. So if

you are looking to get more real time visibility into your usage and costs, the Cost Explorer won’t be

sufficient for that. Real time visibility and alerting may be needed for your use case to avoid being hit

with massive surprise bills due to massive dynamic cost spikes.

A number of third party tooling options exist that are designed to provide much more real time visibility

coupled with instantaneous alerting to help you stay on top of your EKS costs. Some example tools

include:

Researching the AWS marketplace will help you find the appropriate tool for your needs.

 Datadog

 Cloudability

 CloudHealth

 Allocated vs unallocated capacity: Kubernetes node resource allocation is largely defined by the

resource request values you set on your pods. ‘Allocated’ capacity in the Kubernetes context is the

capacity allocated across all pods currently deployed on a node based on their request values.

Understanding this gives you visibility into what resources at each node level may be wasted

because they are not allocated to any workloads.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

05Page

 Utilized capacity: Utilization of a node is defined in terms of the amount of CPU and Memory that is

currently being used on that node. Understanding your node and cluster level utilization is critical in

order to truly understand and optimize your Kubernetes cost spend.

The simplest way to get the CPU and memory utilization for your cluster is by using `kubectl top`

command.

Use kubectl top across all workloads on the cluster to get info about all CPU cores and memory

currently being utilized, then sum them up to get the core and memory utilization.

Using open source monitoring tools such as prometheus or commercial monitoring tools is a better

mechanism to continuously monitor resource utilization of your Kubernetes clusters. You can then build

custom dashboards that give you visibility into this data at various levels of granularity.

To get data about your cluster allocation, first ask Kubernetes to describe a node and it will tell you how

much is allocated vs how much is unallocated.

$ kubectl get nodes

$ kubectl describe node NODE_NAME

Query this for all nodes in your Kubernetes cluster and you now have the total allocated vs unallocated

capacity for that cluster.

06Page

Efficient node & pod auto-scaling

Node and pod auto-scaling strategies involve dynamically adjusting cluster resources based on

workload demands to ensure optimal resource utilization and cost efficiency.

Cluster Autoscaler

 Enable to automatically adjust the number of nodes in your cluster based

on pod resource requests and pending pods in the system.

 This ensures that you have sufficient resources to handle your workloads without wasting money

on idle nodes.

EKS Cluster Autoscaler

Horizontal Pod Autoscaling (HPA)

 to automatically scale the number of replicas (pods) in your deployments based

on CPU utilization or other custom metrics.

 	Set appropriate thresholds to trigger pod scaling. Avoid over-provisioning resources and scale

down when demand decreases to save costs during idle periods.

Implement HPA

Vertical Pod Autoscaler (VPA)

 utilization metrics from containers running in your pods and uses that

information to recommend or automatically update the resource requests and limits.

 It helps to right-size the resource allocation to match the actual resource usage of applications,

which can optimize resource utilization and reduce unnecessary overhead.

VPA collects resource

Pod Resource Requests and Limits

 Set 	 for your pods. Resource requests define the minimum

resources required by a pod, while limits prevent pods from consuming excessive resources.

 Properly defining these values ensures efficient node utilization and reduces the risk of over

provisioning.

accurate resource requests and limits

How long it takes for workload to become ready. Lets say it takes 5 minutes before app initializes after it

launches but before becomes ready. Due to this amount of time, it creates availability concern - not

being able to meet the demand?

https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/vertical-pod-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html

07Page

Node Taints and Tolerations

In Amazon EKS clusters, Node Taints and Tolerations are mechanisms that help control which pods can

be scheduled on specific nodes. Following are some of the ways you can save cost by using Node Taints

and Tolerations.

 Graceful node maintenance: Schedule node maintenance using and Tolerations.

Evacuate pods gracefully from nodes undergoing maintenance, reducing disruptions and avoiding

unnecessary scaling events.

Node Taints

 Optimize node types: Choose node types based on cost-performance trade-offs. Utilize Taints and

Tolerations to match workloads with the appropriate instance types, optimizing cost and

performance.

 Resource segregation: Use Node Taints to label nodes based on their capabilities or costs.

to ensure resource-intensive workloads run on appropriate nodes,

optimizing resource utilization and cost efficiency.

Deploy

pods with matching Tolerations

By adopting these best practices for Node Taints and Tolerations in your EKS cluster, you can optimize

resource allocation, automate scaling, and ensure smooth maintenance operations.

 Automated node scheduling: Use to dynamically adjust node count based on

workload demands and Taints/Tolerations. This ensures sufficient capacity while minimizing idle

resources.

EKS Auto Scaling

https://docs.aws.amazon.com/eks/latest/userguide/node-taints-managed-node-groups.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/place-kubernetes-pods-on-amazon-eks-by-using-node-affinity-taints-and-tolerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/place-kubernetes-pods-on-amazon-eks-by-using-node-affinity-taints-and-tolerations.html
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md#auto-discovery-setup

08Page

Container Registry & Images

Following are some of the best practices for & Images to save cost
container registry

 Image size optimization: Minimize container image size to reduce storage costs and improve

deployment speed.

 Private container registry: Host container images in like AWS ECR for

security, faster access and reduced data transfer costs.

private container registry

 Image tagging strategy: Use a consistent	 to manage versions and avoid using

"latest" in production to prevent unintended deployments.

tagging strategy

 Multi-stage builds: Utilize multi-stage builds in your Docker files to create smaller production-ready

images by using separate build and runtime environments

 CI optimization: Optimize your CI/CD pipeline to only trigger builds and updates for necessary

changes to container images.

 Monitoring and auditing: Regularly monitor and audit your container registry to identify any

unused, outdated, or large images that can be removed or optimized.

 Lifecycle policies: Implement lifecycle policies to automatically remove old or unused images and

keep registry clean.

By applying these container registry and image-related cost optimization practices, you can reduce

storage costs, improve deployment efficiency, and enhance overall performance in your Amazon EKS

cluster.

https://docs.aws.amazon.com/prescriptive-guidance/latest/container-platform-management/choose-registry.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr-using-tags.html

09Page

Spot instances

AWS spot instances enable you to take advantage of unused EC2 capacity at a discounted price. Utilizing

spot instances as worker nodes for your k8s cluster may result in significant cost savings, as spot

instances can be 40-90% cheaper than the on demand instances. However, if not used properly, use of

spot instances may result in cluster and application outages.

Here are a few things to keep in mind to make appropriate usage of spot instances for your Kubernetes

cluster.

 One fundamental issue with spot instances is that they can be terminated anytime, and with

relatively short notice. This makes them not an ideal candidate for a certain class of workloads.

Stateful workloads that have a slow start time, don’t have good horizontal scalability and perform

heavy data processing are typically not good candidates for spot instances. They will most likely

not handle any interruptions gracefully. You should therefore plan to utilize spot instances for

stateless workloads and for stateful workloads that are fault-tolerant

 	When AWS first started making spot capacity available, price of spot instances was significantly

cheaper compared to on-demand instances, ~90% lower than on demand on average. But since then,

the high demand for spot instances has brought the cost advantage down, where in some cases it

may only be about 40% cheaper than on demand instances. It is therefore useful to do the cost-

benefit tradeoff between spot instances and AWS reserved instances or AWS savings plan, to see if

the later may provide nearly similar cost savings but without the node termination risk.

 When requesting for spot instances, use in your spot instance request to

increase the chances of getting spot instances at the best possible prices.

	multiple instance types

Use the AWS to gracefully drain pods before spot instances are

terminated. This ensures that important workloads are not disrupted and can be rescheduled on

other nodes of the cluster.

Spot instance termination handler

 that is close to the on-demand price but not too high. A reasonable bid price increases

the likelihood of getting spot instances while still enjoying significant cost savings.

Set a bid price

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-mixed-instances-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interruption-behavior.html#specifying-spot-interruption-behavior
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/

10Page

Pod Disruption Budgets

Pod Disruption Budgets (PDBs) are a Kubernetes feature that helps ensure the availability of

applications running in a cluster during disruptive events such as node maintenance, updates, or scaling

events. PDBs are also relevant in the context of cost optimization because they can help you control

costs associated with managing your EKS cluster.

Here's how can be used for cost optimization:Pod Disruption Budgets

 Graceful pod evictions during node scale-downs: When you scale down your EKS nodes, pods

running on those nodes need to be evicted to make room for the reduced capacity. By defining a

PDB, you can specify the minimum number of replicas (pods) that should be running for each

application. This ensures that Kubernetes will not evict more pods than the PDB allows, preventing

unnecessary pod evictions that might trigger additional node scaling events and incur additional

costs.

 Preventing costly disruptions during spot instance terminations: If you are using spot instances to

save costs, there's a risk that these instances might get terminated by AWS when the spot price rises

or when AWS needs the capacity. By you can define the minimum number of

replicas that should be available at any time. This helps prevent too many pods from running on spot

instances, reducing the risk of sudden disruptions and associated downtime costs.

configuring a PDB,

 Cost-efficient node draining: During node maintenance or updates, Kubernetes will drain the

nodes to move the pods to other nodes gracefully. , you can control the disruption

budget during node draining. For example, you can specify that a certain number of replicas for each

application should always be running on nodes that are not affected by maintenance. This way,

Kubernetes will prioritize draining other nodes first, ensuring minimal disruption and potential cost

savings due to more efficient resource usage.

By setting a PDB

https://aws.github.io/aws-eks-best-practices/reliability/docs/application/#protect-critical-workload-with-pod-disruption-budgets
https://aws.amazon.com/blogs/compute/run-your-kubernetes-workloads-on-amazon-ec2-spot-instances-with-amazon-eks/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget

11Page

AWS Instance Scheduler

Use to automatically turn off and on your EC2 and RDS instances. This helps

save money by shutting down instances when you don't need them and starting them up when you do.

AWS Instance Scheduler

How to Use It

To make the most of AWS Instance Scheduler, you need to do these steps:

 Decide which instances you want to schedule

 Figure out when they should start and stop

 Create a schedule for each instance

 Connect the schedule to the instance.

Tips for Success

 Schedule instances to run during the times when you need them the most and stop them when you

don't

 Create different schedules for different types of instances. For example, development ones can stop

at night, while production ones should keep running

 Use tags to group your instances so you can set schedules more easily

 Keep an eye on your costs to make sure you're not paying for instances you're not using.

Pod Disruption Budgets are a powerful tool that helps you control the availability and resource usage

of your Kubernetes applications in Amazon EKS. By leveraging PDBs effectively, you can optimize costs

by minimizing disruptions, preventing unnecessary scaling events, and ensuring resources are used

efficiently based on the priority of your applications.

 Limiting pod replicas for cost control: In some cases, you might have certain applications or

microservices that are less critical and can tolerate temporary unavailability. By defining a PDB for

these applications, you can set a lower minimum number of replicas, allowing Kubernetes to scale

down those pods and save costs when resources are needed for more critical workloads.

https://aws.amazon.com/solutions/implementations/instance-scheduler-on-aws/

Key Benefits:

 Cost-Effective: Graviton instances save money by delivering strong performance at a lower cost

 Cloud-Optimized: They're designed specifically for cloud computing, making them a tailored fit for

AWS services like EKS

 Flexibility: Graviton instances suit a wide range of workloads, adding versatility to your EKS cluster

 Interruptible: If your workloads can handle occasional interruptions, Graviton instances can

provide cost savings.

AWS Graviton instances, powered by AWS-designed custom technology, offer up to 40% better price

performance compared to traditional x86-based instances. They're a smart choice for cost-conscious

EKS users. Graviton instances shine in compute-intensive tasks, like web servers, databases, and

containerized applications. They're also ideal for flexible workloads that can handle interruptions, such

as Spot instances.

AWS Graviton instances

GP3 Volumes

GP3 volumes are better for EKS cost optimization because they offer a number of benefits over other

EBS volume types.

 Cost-Effective Choice: GP3 volumes are a cost-effective option for EKS because they are 20%

cheaper than GP2 volumes, saving you money on storage costs for your cluster.

 Improved Performance: GP3 volumes offer up to 30% higher throughput and up to 10% higher

IOPS than GP2 volumes. This means your EKS workloads can perform better without costing you

extra.

 Automatic Scaling: GP3 volumes automatically adjust their performance based on your

workload's needs. This means you won't pay for more performance than you actually use, avoiding

over provisioning and overspending.

 Encryption Included: GP3 volumes come with built-in encryption for data at rest, enhancing

security without added cost.

12Page

https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ebs/general-purpose/

13Page

AWS commitment based discounts are discounts on on demand pricing offered by AWS for your ec2

instances and other services, in return for a larger purchase commitment. By default, and without any

pre-purchase commitment, you can consume ec2 instances on demand, or as spot instances, with the

tradeoff that the spot instances may get terminated anytime with relatively short notice.

If you are able to estimate how much AWS compute capacity you would need for a year (or 3 years), then

you can benefit from better pricing discounts offered by AWS in return for that commitment.

AWS Commitment Based Discounts

Attributes Standard Reserved
Instances

Convertible RIs EC2 Instance
Savings Plan

Compute
Savings Plan

Details Can provide
guaranteed capacity.
Must select Instance
families, Region,
tenancy, OS upfront.
Flexibility to change
the AZ, Instance size &
networking type.

Flexibility to use
different Instance
families, OS, tenancies,
AZ, Instance size &
networking type.

Must select Instance
families and Region
upfront but can use
any instance type
within the family Not
available in all
regions eg China.

Most Flexible. Applies
to EC2 instance usage
regardless of Instance
family, Region, Instance
size, AZ, OS or tenancy.
Also apply to Fargate or
Lambda usage Not
available in all regions
eg China.

No commitment. Pay as you
go, cancel anytime

1 year commitment, no
upfront payment

1 year commitment,
upfront payment

3 year commitment, no
upfront payment

3 year commitment,
upfront payment

Not Available

37%

41% 31%

49%

54%

57%

63%

Not Available Not AvailableNot Available

27% 38% 27%

41% 31%

57%

63%

49%

54%

NOTE - The discount values stated here are based on the discount values provided on the AWS website

pricing data and only provided to give you an idea of what level of discounts you could get with different

options. The actual discounts will vary depending on your instance type, region etc. Please refer to the

AWS website for the final discount details.

Following table describes various options available across Reserved Instances and Savings Plan and

their tradeoffs wrt on demand instances. It also provides example discount values for each.

14Page

1. Spot Instances - Spot instances are similar to on-demand instances in that no upfront commitment is

required. But with spot instances, you do make availability tradeoffs. More details in the ‘Spot Instances’

section of this document.

2. Enterprise Discount Program (EDP) - AWS offers EDP as an option on top of purchasing Reserved

instances or Savings plan. EDP usually requires much higher annual commitment from the customer, and

it’s a use it or lose it model. You pay upfront for a certain commitment for a year’s worth of usage and

you get a discount that usually applies to any AWS services that you consume.

In addition to the above, the following two options are also available.

Tuning Recommendations

EKS tuning recommendations involve fine-tuning various aspects of your EKS cluster and applications

to achieve better resource utilization and cost efficiency.

 Use to track and analyze EKS spending by different teams, projects, or

environments. This provides visibility into the cost drivers, allowing you to optimize costs where

needed.

 Regularly 	 and applications using tools like 	 nd

Kubernetes monitoring solutions. Continuously review resource usage patterns and adjust

configurations as needed to achieve cost optimization.

 Regularly assess the performance and resource requirements of your applications to choose the

right EC2 instance types. helps avoid underutilization and over payment

for resources.

 Identify workloads suitable for and adjust the Spot Instance bid price based on

your cost requirements. Continuously monitor the Spot market to make informed decisions on

Spot Instance usage.

 Adjust the configuration of the to fine-tune node scaling based on your

workload patterns and resource demands. Experiment with different settings to achieve the

optimal balance between availability and cost.

 Regularly review and adjust for your application pods. Accurate

resource definitions help Kubernetes allocate resources efficiently and prevent over

provisioning, leading to potential cost savings.

cost allocation tags

monitor your EKS cluster Amazon CloudWatch a

Right-sizing the nodes

Spot Instances

EKS Cluster Autoscaler

	resource requests and limits

https://docs.aws.amazon.com/eks/latest/userguide/eks-using-tags.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/amazon-eks-logging-monitoring.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://aws.amazon.com/blogs/containers/cost-optimization-for-kubernetes-on-aws/
https://aws.amazon.com/blogs/compute/cost-optimization-and-resilience-eks-with-spot-instances/
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html

15Page

By implementing these tuning recommendations, you can continually optimize the performance and

cost-effectiveness of your EKS cluster, ensuring that you are efficiently using resources and achieving

cost savings where possible.

Using AWS native tools such as AWS Cost Explorer and AWS Compute Optimizer can be helpful to get

hints about what instances should be optimized.

At the end of the month, AWS sends you a final invoice listing the details of your usage. The problem

with the AWS invoices is that they show aggregate charges only, with no information on what specific

resources created the charge. However, AWS also gives you access to the raw data used to create your

invoice. This is where Cost Explorer comes in play. You can upload the AWS Cost and Usage Report into

an S3 bucket, then provide access to it in your Cost Explorer. Cost Explorer will then provide a more

granular visualization of your data, where you can drill down to specific instances that were specifically

expensive. You can also view instance tags here to better understand what that node may be used for.

There are some limitations with using AWS native toolset however:

Paid tools from other vendors such as Datadog may be of benefit here as some vendor tools have the

ability to go a step further and correlate the node cost with the application running on it.

Limitations of AWS Native Tools

 No node to workload association - AWS Cost Explorer or Compute Optimizer may show you an

increase in EC2 cost tagged for your EKS workers, but you can't see which K8s workloads may be

scaling or contributing the most to the increase, out of all workloads that may have been

provisioned on that node.

 AWS Cost Explorer data is not real time - Cost Explorer updates its data three times in a day, at

the most. Unless your Kubernetes environment is not very active, for debugging most scenarios,

you will need more real time data than this.

16Page

Right size resources

Step 1: Estimate your application’s resource requirements to right size application pods.

 If you’re looking for guidance on sizing pods for an existing application, skip ahead to the next

section. But if you’re working on a new application that is going to be deployed to production for the

first time, it can be difficult to know how much CPU and memory it will need in a real production

scenario.

 In these cases, the first step would be to make an estimate based on the application code and

benchmark it on sample inputs. The best people to make this effort are the developers working on

the service. Initially, they can benchmark components of the application separately, and then

perform end-to-end benchmarks as development progresses. Establishing a ballpark expectation

upfront may be useful to ensure business objectives are met—for instance, if performance is poor,

the service may end up being too costly to run. However, this estimate should be checked with

benchmarking as the project progresses, in order to avoid discovering major overruns when going

into production and opening up your application to customers.

 Use these estimates to set the appropriate request and limit values for your k8s service.

 This first estimate needs to be conservative; we recommend that you request more than you think

the service will need. If you request less CPU than needed, performance issues may arise due to

throttling. If you request less memory than the application regularly needs, then Kubernetes will

evict the pods often. In the worst case, the kernel may kill container processes if they are using too

much memory (OOMKilled).

Right sizing of your Kubernetes resources involves performing a thorough analysis of your application’s

resource usage, across CPU, Memory, Storage, Networking, and then adjusting the application’s CPU

and memory request and limit values, so that the application only uses the resources it needs. This

avoids over-provisioning to save costs.

One of the most common reasons for application cost overrun is that the request and limit values set

for the application are too conservative. Typically these values are set based on the peak

requirements of an application, however in 90% of cases the application may not need these resources.

Setting the application QoS to be Guaranteed (done with request is equal to limit) in such scenarios

will result in resource wastage.

17Page

Step 2: Further optimize the right sizing process.

Making a best-effort guess about the resource requirements of your application is a step in the right

direction, but over the long run, you’ll want to use tools like the Kubernetes Vertical Pod Autoscaler

and historical data to right size your workloads.

 As a way to make it easier to right size pods, the Kubernetes project launched a project called the

Vertical Pod Autoscaler (VPA). The VPA collects CPU and memory usage telemetry over time and

uses that data to recommend appropriate values for your containers’ CPU and memory requests

and limits. The VPA can also be configured so that those recommendations are applied, meaning

that your pods will automatically be rescheduled with the new set of requests and limits.

 This looks like a good starting point. But in order to decide if the VPA is the right solution for your

workloads, it is important to understand how it works, how it makes its recommendations, and

some of its current limitations.

 The VPA currently uses the Kubernetes Metrics Server, a daemon that collects resource metrics

from kubelets and exposes them in the Kubernetes API server. This means that in order to use the

VPA, you would need to deploy and operate the metrics-server Deployment in your Kubernetes

clusters.

 Another factor to take into account is that, by default, the VPA makes recommendations of your

containers’ future resource usage based on historical data observed over a rolling window. This may

work well for workloads with stable usage of CPU or memory, but it wouldn’t work as well for

workloads with different usage patterns, like those with periodic spikes and dips in CPU usage. To

mitigate this, VPA 0.10 shipped with support for alternative recommenders, but this still introduces

the overhead of having to implement custom recommenders for different workloads’ resource

usage patterns.

The Kubernetes Vertical Pod

Autoscaler

 Once you’ve made a first estimate, you can monitor your containers’ resource usage and make

adjustments from there.

https://platform9.com/elastic-machine-pool/

18Page

Step 3: Right size your replica count.

Challenges with rightsizing

When you are able to horizontally scale pods, you have a choice of doing say 10 replicas that are small,

or 3 larger replicas, or 1 large replica. Making the right decision here has direct correlation to avoiding

wasted resources.

One challenge with using VPA is that it can not resize workloads in place. VPA needs to restart your

workload in order to make its changes effective, which may result in an outage. So this introduces an

availability concern that you must address.

https://platform9.com/elastic-machine-pool/

18Page

It can be easy to overlook your AWS EKS spend when you are in the early adoption phase. However, as

your EKS adoption grows rapidly, costs can quickly skyrocket. We therefore recommend employing

proper cost optimization framework early on, once you make an organization wide decision to

standardize on AWS EKS as your Kubernetes platform of choice.

Following these recommendations and creating a well defined plan will result in significant cost savings

and predictability for your EKS environment.

Summary

Learn More

Learn how to slash AWS

EKS costs by 50% using

Platform9 EMP.

https://platform9.com/elastic-machine-pool/

Follow us on

Headquarter: 84W Santa Clara St Suite 800, San Jose, CA 95113

Phone: +1 650-898-7369

Platform9 empowers enterprises with a faster, better, and more cost-effective way to go cloud native. Its
fully automated container management and orchestration solution delivers cost control, resource
reduction, and speed of application deployment. Its unique always-on assurance™ technology ensures 24/7
non-stop operations through remote monitoring, automated upgrades, and proactive problem resolution.
Innovative enterprises like Juniper, Kingfisher Plc, Mavenir, Redfin, and Cloudera achieve 4x faster time-to-
market, up to 90% reduction in operational costs, and 99.99% uptime. Platform9 is an inclusive, globally
distributed company backed by leading investors.

Email: info@platform9.comWebsite:

India office: 7th Floor, Smartworks M Agile Building,Pan Card Club Road, Baner Pune,
411045 Maharashtra, India

https://platform9.com/contact/

© 2023 Platform9. All Rights Reserved

https://www.linkedin.com/company/platform9-systems
https://www.youtube.com/channel/UC08zvzJIpCwt-oRdYvHJ9pA
https://www.instagram.com/platform9sys/
https://twitter.com/Platform9Sys
https://slack.platform9.io/
mailto:info@platform9.com
https://platform9.com/contact/

