
How a SaaS data management
company slashed AWS EKS cost
by 58%

Case study

Platform9's Elastic Machine Pool (EMP) delivers continuous and intelligent optimization
to maximize Kubernetes utilization and cut public cloud cost.

Summary

Page 1

A rapidly expanding SaaS data management firm, experiencing a surge in service adoption, adopted an aggressive cloud-native
approach by transitioning their main SaaS application to run on Kubernetes in Amazon EKS. This move not only accelerated feature
development but also increased cloud expenses, with Kubernetes constituting about 50% of their multimillion-dollar AWS costs. Even
with the surge in usage, the budget remained unchanged due to economic constraints.

Challenges

Inability to persuade developers to prioritize cost savings

Inefficient Bin Packing

Lack of granular visibility of utilization and costs

Manual optimization wasn’t working

The Operations team struggled with unchecked cluster deployments and poor utilization. Despite the use of tools like AWS CloudWatch and
Kubecost offering insights, true optimization was elusive. Expenses increased as attempts to optimize clusters produced minimal outcomes.

Results

In just four months, the Ops team was able to cut Kubernetes costs by 58%, from $19 million to $8 million per year.

In this time period, EMP was able to deliver these cost savings by automatically increasing average cluster memory

utilization from 25% to an acceptable 60%.

Page 2

“Our Kubernetes costs were multiplying
out of control. With EMP, we finally
achieved automated optimization. In
months, we cut spending by 58%, and
our cluster memory utilization improved
from 25% to 60%, helping us avoid a
budget crisis."

VP Engineering,

SaaS Data Management company

Page 3

Situation
As the adoption of its service skyrocketed, a SaaS data management technology company rapidly expanded its cloud consumption. The company’s primary
revenue-generating product is deployed as SaaS on AWS. With more than 50% of their workloads containerized and running on Elastic Kubernetes Service
(EKS) – AWS's native Kubernetes offering – Kubernetes quickly became the largest consumer of cloud infrastructure.

Their primary application running microservices was deployed on hundreds of EKS clusters across development, staging, and production environments.
While this allowed the company to accelerate feature development, it also drove up cloud costs. Kubernetes accounted for almost 50% of their multimillion-
dollar AWS bills. Despite this enormous increase in usage, budgets remained flat due to economic conditions.

Page 3

Page 3

Challenges
The company's VP of Reliability Engineering was under pressure from the CFO to keep cloud spend under control. However, she and her DevOps architects
faced a number of challenges:

The Ops team was drowning, trying to keep up with the sprawling growth. Engineers continued deploying new clusters with minimal oversight. As a result,
their overall memory utilization of Kubernetes nodes was 25% on average.

Page 4

Developers sized and allocated the main application resources based on peak usage requirements. However, for the majority of the time, the
application used only a small percentage of the resources reserved for it, resulting in a lot of waste. The developers preferred this approach
because it minimizes the risk of costly downtime. Specifically, they wanted to avoid situations where Kubernetes can't allocate the necessary
resources, which can cause the application to shut down.

Inability to persuade developers to prioritize cost savings:

Workloads on Kubernetes are placed on available nodes based on the workload's resource requirements, as well as a set of plugins or 'sidecars'
that must be installed on each node. Since the instance sizes on AWS are not always configurable to your workload needs, there were often
cases where there were more resources available on a given node than what was allocated to the workload plus all the plugin components
deployed on it. This inefficient bin packing resulted in a lot of capacity that was not used but still incurred expenses for the company.

Inefficient Bin Packing:

While the DevOps teams had good visibility into their overall AWS and Kubernetes spend, they found it very difficult to identify the exact
workload that was contributing to the majority of costs. The tools from AWS Cost Explorer were not granular enough to help them identify the
spikes in usage that contributed to the majority of the costs. Another challenge was having visibility into the actual utilization of their EKS
clusters. While they could see how many resources were allocated to their workloads, they could not see what percentage of those resources
were actually used on average over a given period of time.

Lack of granular visibility of utilization and costs:

On top of the visibility and control challenges, keeping clusters optimized was a losing battle. By the time the Ops team tuned utilization on
one cluster, two more were deployed and wasting resources. The exponential growth overwhelmed any manual efforts. The Kubernetes
sprawl was unstoppable.

Manual optimization wasn’t working:

Page 5

Alternatives tried and failed
The Ops team tried several alternatives to get costs under control:

The team utilized spot instances as a way to optimize Kubernetes costs. However, spot instances were not a fit for all their
workloads, because several components of their primary application could not tolerate interrupts well. As a result, they had to create
affinity rules to map the right workloads to the right instances, adding to the complexity. In the end, spot instances could only
account for 20% of their infrastructure needs at most, and the remaining 80% had to be deployed using on-demand instances.

Spot instances were not a fit for all workloads

The company negotiated substantial discounts with AWS by committing to 1 and 3-year Reserved Instance purchases. However,
because Reserve Instance (RI) commitments are instance type specific and can not be easily transferred to different instance types,
their dynamic workloads and unpredictable capacity needs made the RI model too rigid. Switching to a Savings Plan instead of
Reserved Instances helped, but the long-term commitments locked them into significant excess capacity as needs changed over
time.

Reserved Instances & Savings Plan

The Ops team tried setting CloudWatch alarms to notify when CPU or memory utilization dropped below 50% on a cluster. This
required manually configuring per-cluster alarms across all of their EKS environments. The overhead of managing the alarms at scale
was untenable. Engineers also tended to ignore or delete the alarms to avoid dealing with justification paperwork.

CloudWatch rules

As a brute force tactic, the Ops team manually consolidated clusters and aggressively scaled nodes down. However, this caused
performance issues and outage risks. The engineers rebelled against this aggressive downsizing. The operational burden of constant
downsizing was also unsustainable for the small Ops team.

Cluster downsizing

Page 6

Solution
On the verge of a budget crisis, the VP of Reliability Engineering began looking for alternative solutions and discovered Platform9's Elastic Machine Pool
(EMP). The idea that this solution could dynamically optimize Kubernetes through intelligent oversubscription and bin packing, and do this all behind the
scenes with no changes to their applications was really appealing to her.

EMP leverages patent-pending software to consolidate Kubernetes deployments into the densest possible configuration within a cluster. Using technology
such as dynamic rebalancing of workloads across available compute resources, EMP is able to make sure that the application SLA is never compromised, while
still getting the best utilization from the underlying CPU and Memory resources. This allows EMP to achieve the best of both worlds - cut down wasted
resources by half while keeping the application SLA. All of this is beyond native Kubernetes capabilities.

EMP continuously monitors resource utilization across all clusters to identify optimization opportunities. The algorithm predicts workload needs and
simulates scheduling scenarios to model the optimal distribution for maximizing utilization.

EC2 VMs

EKS Node Pools

EMP Compute Engine

Workload
SLA
maintained

CPU & memory
utilization
improved from
10-30% to 60 to
80 %

Integrates with
existing EKS

clusters

Works side by
side with

existing EKS
nodes or node

pools

EKS clusters EKS clusters EKS clusters EKS clusters

EMP Architecture

Elastic VMs

Elastic Machine Pool

Continuous Optimization

Page 4

Based on these predictions, EMP elastically scales cluster resources up and down in real-time to maintain peak efficiency. When utilization spikes occur that
require additional capacity, EMP seamlessly scales out the cluster and reschedules pods onto new nodes without any downtime.

All of this occurs automatically behind the scenes, without any manual intervention required by engineering teams. Engineers do not need to change their
resource requirement settings for their applications, thus reducing the constant friction between Engineering and Ops around resource optimization.

Deploying EMP into their existing EKS environment required no infrastructure or tooling changes for the company. EMP seamlessly integrated with their
existing AWS EKS environment and allowed them to easily migrate workloads, starting with Dev and QA workloads first, then moving to staging and
production as the Ops teams built more confidence with the product.

Page 7

EMP Dashboard

Results

The company first rolled out EMP for its QA environment. Within

weeks of deployment, EMP started delivering significant improvements

in Kubernetes utilization. As EMP optimized the infrastructure

footprint, the company's Kubernetes spending decreased steadily

month after month.

In just four months, the Ops team was able to cut Kubernetes costs by

58%, from $19 million to $8 million per year. In this time period, EMP

was able to deliver these cost savings by automatically increasing

average cluster memory utilization from 25% to an acceptable 60%.

The company regained visibility and control over its out-of-control

Kubernetes costs. The VP of Reliability Engineering was able to avoid a

budget crisis while continuing to meet their scaling demands, thanks to

Platform9. EMP enabled her small team to intelligently tame

Kubernetes cost overruns without imposing rigid development

constraints or impacting developer productivity.

EMP provided invaluable reassurance. The team confidently informed

the CFO about the cost savings. Evenings and weekends previously

spent on manual adjustments or coordinating with internal teams were

now liberated due to the reduced cloud expenses. Instead of financial

fire drills, the Ops team could finally focus on enabling innovation for

the company's developers.

Page 8

25%

60%

Average cluster
utilization increased

$19 M

$ 8 M

Kubernetes cost cut 58% in a
year

About us
Platform9 empowers enterprises with a faster, better, and more cost-effective way to go cloud native. Its fully automated
container management and orchestration solution delivers cost control, resource reduction, and speed of application
deployment. Its unique always-on assurance™ technology ensures 24/7 non-stop operations through remote monitoring,
automated upgrades, and proactive problem resolution. Innovative enterprises like Juniper, Kingfisher Plc, Mavenir, Redfin, and
Cloudera achieve 4x faster time-to-market, up to 90% reduction in operational costs, and 99.99% uptime. Platform9 is an
inclusive, globally distributed company backed by leading investors.

Follow us on

Headquarter: 84W Santa Clara St Suite 800, San Jose, CA 95113

Phone: +1 650-898-7369 Email: info@platform9.com Website: https://platform9.com/contact/

India office: 7th Floor, Smartworks M Agile Building,Pan Card Club Road, Baner Pune, 411045 Maharashtra, India

https://www.linkedin.com/company/platform9-systems
https://www.youtube.com/channel/UC08zvzJIpCwt-oRdYvHJ9pA
https://www.instagram.com/platform9sys/
https://twitter.com/Platform9Sys
https://slack.platform9.io/
mailto:info@platform9.com
https://platform9.com/contact/

