
Managing Kubernetes:
Kops vs.
AWS EKS vs.
Platform9 KaaS

White Paper

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER

Contents
Overview . 1

Kops . 2

Features .2

Setup and Deployment .3

Configuration and Access .3

Cluster Management .4

Portability .5

Networking .5

EKS . 6

Features .6

Setup and Deployment .7

Configuration and Access .7

Cluster Management .7

Portability .8

Networking .8

Platform9 . 9

Features .9

Setup and Deployment .10

Configuration and Access .10

Cluster Management .11

Portability .11

Networking .12

Conclusion .12

©2021 Platform9 Systems, Inc. All rights reserved.

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 1

Overview
Software engineering organizations can consider a number of different options
when evaluating which Kubernetes management solution is right for them. This
article provides DevOps engineers with a clear picture of the similarities and
differences between three popular Kubernetes deployment and management
tools: Kubernetes Operations (Kops), AWS Elastic Kubernetes Service (EKS),
and Platform9 KaaS.
This article assumes that the reader is already familiar with Kubernetes; if not,
you should review the Kubernetes documentation for a very clear explanation
of what you need to know to get started. Platform9 has also posted a number
YouTube videos covering all aspects of setting up and managing Kubernetes.
IT teams often want to move from Kops to Platform9 because they have found
Kops to be difficult to set up and manage. Some teams first try Amazon EKS as
their Kubernetes solution, but want to replace it with a multicloud solution that
doesn’t have the limitations of EKS.
To show you how Kops, EKS, and Platform9 compare, we will examine each
option based on the following:

• Setup and deployment
• Configuration and access
• Cluster management
• Portability, multicloud support, and lock-In
• Networking and load balancing

At-a-Glance
The following table compares the ease-of-implementation and key features of
the three solutions.

Kops EKS Platform9

Setup and
Deployment

Moderate (CLI only),
requires some
CLI knowledge to
complete.

Simple to complex,
depending on your
chosen deployment
methodology such
as CLI vs. UI.

Simple setup and
deployment using web UI.
CLI setup is also available.

Configuration
and Access

Complex (CLI only),
requires some
CLI knowledge to
complete.

Moderate, requires
knowledge of other
AWS services such
as IAM and ECR.

Simple configuration for
cluster via web UI. User
access creation available
via web UI as well. CLI also
available.

Cluster
Management

Complex (CLI
only), requires
more advanced CLI
knowledge along
with other tools such
as kubectl.

Moderate, control
plane is managed
by AWS. Scaling
and container
deployment is user
managed.

Simple to manage. Control
plane is abstracted and
managed by Platform9.
Scaling easily done via CLI
or web UI.

Portability Good, but doesn’t
run on bare metal
or VMs outside of
supported cloud
providers.

Everything works
best with AWS-based
solutions (except
containers which are
portable).

Excellent portability across
cloud providers as well as
bare metal.

Networking Good, but requires
knowledge of CNI
and Kubernetes
network plugins.

Good when using
AWS-based
solutions.

Excellent. Multiple
network plugins available
depending on user
requirements.

IT teams often want
to move from Kops to
Platform9 because they
have found Kops to be
difficult to set up and
manage. Some teams first
try Amazon EKS as their
Kubernetes solution, but
want to replace it with
a multicloud solution
that doesn’t have the
limitations of EKS.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.youtube.com/c/Platform9/videos

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 2

Kops
Kops is the Kubernetes community’s officially supported method of setting up
and maintaining Kubernetes clusters in the cloud. It is a CLI-based tool and is
usually installed alongside kubectl for complete cluster management. It offers
a number of features that are worth considering when you’re evaluating which
solution you want to use for cluster setup.
Since Kops is supported directly by the Kubernetes community, it’s often the
first solution that teams try. The most common issue that teams run into with
Kops (depending on the use case), is the complexity of managing it.

Features
• Granular control of Kubernetes cluster setup in the cloud via a CLI-based

tool that can be installed locally on your laptop or a virtual instance.
• The ability to create, destroy, upgrade, and maintain Kubernetes clusters.
• Capable of deploying high-availability (HA) Kubernetes masters.
• Provisions the required cloud infrastructure on supported platforms.

Currently, AWS is the only supported cloud provider, but support for other
providers is available in either alpha or beta stages of development.

• The ability to generate Terraform configurations that can then be reviewed
and deployed using terraform plan and terraform apply.
 ◦ This feature is very useful because you can diff your configs in Git to

see changes that are proposed or committed.
 ◦ It is somewhat limited in that Kops still considers what it deploys to be

the desired state, whereas Terraform configurations are considered a
representation.

 ◦ Therefore, if you change your Terraform configs and apply them
directly, you may run into conflicts. In other words, it’s probably best to
make your changes through Kops rather than making them manually
through Terraform unless you are an expert.

• Support for managed add ons, including:
 ◦ AWS Load Balancer Controller, which helps support AWS ALB and

NLBs.
 ◦ Cluster autoscaler for adjusting the size and number of the worker

nodes.
 ◦ Cert-manager, a native Kubernetes certificate management controller

used for managing certs from different providers such as Let’s Encrypt,
Vault, or self-signed certs, etc.

 ◦ Metrics Server for collecting Kubernetes metrics via an API server
for the purpose of cluster autoscaling. This feature is not meant for
metrics forwarding or use with various monitoring or observability
systems such as Prometheus.

 ◦ Other features.
• Container Network Interface (CNI) is supported for different networking

providers including AWS VPC, Flannel, Kubenet, Kube-router, Weave, etc.
Probably the biggest benefit of Kops is the granularity and flexibility one gains
when using it with Kubernetes, learning all of the parts that one wouldn’t
normally learn with a hosted or managed service.

Probably the biggest
benefit of Kops is the
granularity and flexibility
one gains when using it
with Kubernetes, learning
all of the parts that one
wouldn’t normally learn
with a hosted or managed
service.

https://github.com/kubernetes/kops
https://kubernetes-sigs.github.io/aws-load-balancer-controller/latest/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://cert-manager.io/docs/
https://github.com/kubernetes-sigs/metrics-server
https://kops.sigs.k8s.io/addons/
https://github.com/containernetworking/cni
https://kops.sigs.k8s.io/networking/
https://kops.sigs.k8s.io/networking/

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 3

However, it also requires a significantly higher overhead since there is a learning
curve associated with getting up to speed on Kubernetes setup, configuration,
and maintenance. Therefore, it might not be a feasible approach considering
available personnel, in-house skill sets, and time to deliver.

Setup and Deployment
The first step in setting up and deploying a cluster with Kops is to install Kops
and kubectl. You may also install other tools such as minikube and kubeadm.
These are relatively simple operations that can be performed by almost anyone
who is familiar with the command line on any OS. It can be done via brew on
macOS, curl on Linux or macOS, or via binary on Windows.

Configuration and Access
The following is an example of configuration and access using AWS since it is
the only supported cloud platform.

• You must have an AWS account set up and configured, and it should be
configured using the recommended best practices.

• You should not use the unified billing or organizations master account or
the root user in any AWS account to perform the actions required to set
up your Kubernetes cluster. Instead, you should use a sub-account with a
named IAM user and least privileges.

This is not a deep dive on Kops setup and configuration and there are several
other steps involved including:

• Installation of AWS CLI tools, which is the standard practice for any type of
CLI access to AWS.

• Creation of a dedicated Kops IAM user, group, and associated policies for
CLI access to your designated AWS account.

• Configuration of Route53 to add required DNS records.
• Setup and configuration of an S3 bucket for storing cluster state.
• Creation of the cluster configuration using the Kops CLI.
• Building the cluster itself using the Kops CLI, which will create all the

necessary AWS resources such as VPC, EC2, and EBS.
It takes about 30 minutes to get the necessary tools installed and run the
required commands when you follow the steps listed on the Deploying to AWS
page in the Kops documentation. After that, it takes about 10 minutes for Kops
to instantiate all the components, including VPC, ASGs, EC2, and EBS volumes
for the master and worker nodes, plus etcd.
You may experience a hiccup in the form of an “unauthorized” error when you
try to get the cluster status using this command:

kops validate cluster

This may be due to changes in the authentication mechanism in Kubernetes
v1.19. To correct this, try running the following command:

kops export kubecfg --admin

It takes about 30 minutes
to get the necessary
tools installed and run
the required commands
when you follow the steps
listed on the Deploying
to AWS page in the Kops
documentation.

https://kubernetes.io/docs/tasks/tools/
https://aws.amazon.com/organizations/getting-started/best-practices/
https://kops.sigs.k8s.io/getting_started/aws/
https://aws.amazon.com/cli/
https://kops.sigs.k8s.io/getting_started/aws/
https://kops.sigs.k8s.io/getting_started/aws/
https://kops.sigs.k8s.io/getting_started/aws/

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 4

Thereafter, commands to check the status of the cluster should resemble:
○ → kops validate cluster

Using cluster from kubectl context: testcluster001.example.
com

Validating cluster testcluster001.example.com

INSTANCE GROUPS

NAME ROLE MACHINETYPE MIN MAX SUBNETS

master-us-west-2a Master t3.medium 1 1 us-west-2a

nodes-us-west-2a Node t3.medium 1 1 us-west-2a

NODE STATUS

NAME ROLE READY

ip-172-20-35-166.us-west-2.compute.internal master True

ip-172-20-52-15.us-west-2.compute.internal node True

Your cluster testcluster001.example.com is ready

Cluster Management
Once you’ve completed the steps above, you can manage the cluster using
kubectl or the Kops CLI itself depending on which actions you want to perform.
You may also install the Kubernetes Dashboard to perform some of the tasks
normally done from the CLI such as checking cluster status or managing
application deployments. It doesn’t cover the full range of features that you get
from the CLI tools, but it’s a good start.
Dashboard requires additional configuration beyond just deploying it to the
cluster in order to properly handle user authentication and make it available on
localhost. This is covered in the documentation.

If the Dashboard isn’t suitable for your needs, there are other options for a Web
UI with varying feature sets such as Octant or Lens.

Kubernetes Dashboard
requires additional
configuration beyond
just deploying it to the
cluster in order to properly
handle user authentication
and make it available on
localhost.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://octant.dev/
https://k8slens.dev/

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 5

When you are finished with your cluster, you can delete it using the Kops CLI:
kops delete cluster --name ${NAME} --yes

Kops delete output can be considerable and isn’t included here. Any AWS
resources (such as EC2 and EBS) that were created to support the cluster will be
deleted when running the `kops delete cluster` command.

Portability
Any application that runs on a standard Kubernetes cluster will work when
configuring a cluster with Kops since it uses upstream Kubernetes.
Kops does not support bare metal or on-prem VMs for deploying clusters. It
currently supports the following cloud providers:

• AWS (officially supported)
• Digital Ocean, GCE, and OpenStack (in beta)
• Azure and Alicloud (in alpha)

Networking
Depending on how you configure your cluster using Kops, it will take care of
any basic networking tasks required to spin up a new cluster. Load balancing is
supported through Elastic Load Balancing.
While a number of Kubernetes networking providers are in different stages of
development, only Calico, Cilium, and kubenet are currently stable. All others
are still considered experimental.
Available features and limitations are determined by the network provider that
you choose. For example, when using the default provider, kubenet, there is
effectively a limit of 50 nodes due to the AWS limit of 50 routes in the routing
table. To use kubenet, there are limited workarounds such as requesting an AWS
limit increase.
Though kubenet is the default provider for Kops, due to its inherent limitations
it is not recommended for production clusters that are expected to grow
significantly.

While a number of
Kubernetes networking
providers are in different
stages of development,
only Calico, Cilium, and
kubenet are currently
stable. All others are still
considered experimental.

https://kops.sigs.k8s.io/networking/
https://kops.sigs.k8s.io/networking/

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 6

EKS
EKS is AWS’s implementation for hosted Kubernetes and is often the first stop
for teams new to Kubernetes. It’s a good option if you are looking to start out
with Kubernetes and are already using AWS.
Since EKS exists within the AWS ecosystem, services like EC2, ELB, VPC,
and Fargate are fully supported. AWS boasts a number of other features and
integrations as well.

Features
AWS offers many features and options for EKS and is a great choice for getting
up and running relatively quickly.

• Supports upstream Kubernetes and is certified Kubernetes conformant.
Kubernetes applications can be ported to EKS without code modification.

• Managed, high-availability control plane runs across multiple AWS
Availability Zones (AZs) with 99.95% SLA. This includes Kubernetes
masters as well as etcd.

• Automatically replaces unhealthy control plane nodes.
• Managed, automatic security patching for the control plane.
• Supports AWS Fargate (serverless) as well as EC2 (for worker nodes).
• Supports EC2 spot instances for cost optimization.
• Includes console to view status and manage Kubernetes clusters.
• Ability to run Windows and Linux worker nodes side-by-side in the same

cluster.
• Full Application Load Balancer (ALB), Network Load Balancer (NLB), and

VPC support.
• Supports hybrid deployments (such as on-prem and cloud-based

Kubernetes deployments) using a combination of AWS-hosted EKS
alongside EKS Distro and EKS Anywhere (which hasn’t been released yet)
for on-prem, bare metal, and VMs.

• Supports Kubeflow with EKS for machine learning on AWS GPU instances.
• Kubernetes Jobs API for scheduled batch jobs.
• Support for Elastic Fabric Adaptor (EFA) for High-Performance Computing

(HPC) workloads.

• Other features.

Drawbacks
Drawbacks to using EKS depend on your specific use case. Using EKS will limit
you to using other AWS services to support it, if only for the sake of convenience.
Each AWS service has its own advantages and disadvantages over similar
offerings from other providers.
Cost can be another drawback. Each AWS service that you leverage usually has
a cost component associated with it. These costs can add up quickly if you’re
not careful, so you will need to monitor them closely to avoid going over budget
when using additional AWS services.

Cost can be another
drawback. Each AWS
service that you leverage
usually has a cost
component associated with
it. These costs can add up
quickly if you’re not careful,
so you will need to monitor
them closely to avoid going
over budget when using
additional AWS services.

https://aws.amazon.com/eks/
https://aws.amazon.com/fargate/
https://aws.amazon.com/eks/eks-distro/
https://aws.amazon.com/eks/eks-anywhere/faqs/
https://www.kubeflow.org/docs/about/kubeflow/
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/eks/features/

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 7

Setup and Deployment
There are a variety of options for setting up EKS including the AWS Console,
cloudformation, Terraform, or eksctl, which uses cloudformation under the hood.
There are pros and cons to using each.
To set up a test cluster with eksctl, follow the instructions in the AWS EKS
documentation. The following macOS example does not include installing
prerequisite AWS CLI and kubectl. It assumes you are an IAM user with
administrative privileges in your AWS test account.

brew install eksctl

In this example, AWS Fargate is the option chose for worker nodes.
To instantiate the cluster:

eksctl create cluster --name testcluster004 --region us-
west-2 --fargate

The cluster should be up and running in about 15 minutes.
○ → kubectl get nodes

NAME STATUS ROLES AGE VERSION

fargate-ip-192-168-145-179.us-west-2.compute.internal Ready
<none> 2m5s v1.18.9-eks-866667

fargate-ip-192-168-163-10.us-west-2.compute.internal Ready
<none> 2m13s v1.18.9-eks-866667

It would appear like this in the AWS Console:

Configuration and Access
EKS may ask you to update your version of Kubernetes, which typically takes an
hour.
eksctl takes care of several steps such as designating the IAM user that created
the cluster as the cluster administrator. If you plan on having a multi-user cluster,
then you will need to configure additional IAM users.
There are additional steps to be performed in order to fully configure the cluster,
including configuring the cluster autoscaler and preparing to deploy sample
workloads.

Cluster Management
The EKS control plane is managed for you, so little is required for this once the
cluster is instantiated. You will, however, have to manage worker nodes via EC2
or Fargate.

Amazon provides an
open source version of
Kubernetes called EKS
Distro, which can be used
to install EKS on bare metal,
VMs, or EC2. The advantage
of this option is that you can
use the AWS Console or API
for management purposes
without needing to use
third-party dashboards or
tooling.

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-eks-cluster.html
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://eksctl.io/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://aws.amazon.com/fargate/
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/sample-deployment.html
https://docs.aws.amazon.com/eks/latest/userguide/sample-deployment.html
https://aws.amazon.com/eks/eks-distro/
https://aws.amazon.com/eks/eks-distro/

KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 8

AWS has complete documentation for most of the other cluster management
actions that you may perform such as installing Metrics Server, Prometheus, and
the Kubernetes Dashboard.
To delete the cluster:

eksctl delete cluster --name my-cluster --region region

Portability
Amazon provides an open source version of Kubernetes called EKS Distro,
which can be used to install EKS on bare metal, VMs, or EC2. The advantage
of this option is that you can use the AWS Console or API for management
purposes without needing to use third-party dashboards or tooling.
Using EKS and ancillary services limits you to AWS-related products and
distributions whether on-prem or in the AWS cloud. This can be an advantage
for teams that don’t want to deal with the complexities of managing external
vendors, services, or packages. On the other hand, it’s a disadvantage if you’re
looking for portability or flexibility across multiple providers.

Networking
EKS supports Virtual Private Cloud (VPC) and related constructs as well as
Application Load Balancer (ALB) and Network Load Balancer (NLB) via the AWS
Load Balancer Controller. CoreDNS and Calico are also supported.

Using EKS and ancillary
services limits you to
AWS-related products
and distributions whether
on-prem or in the AWS
cloud. This can be an
advantage for teams that
don’t want to deal with the
complexities of managing
external vendors, services,
or packages. On the other
hand, it’s a disadvantage if
you’re looking for portability
or flexibility across multiple
providers.

https://docs.aws.amazon.com/eks/latest/userguide/eks-managing.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html
https://aws.amazon.com/eks/eks-distro/
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://coredns.io/
https://www.projectcalico.org/

 KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 9

Platform9
Platform9 KaaS is certified Kubernetes conformant. It provides a cloud-hosted
management plane and interface where all cluster management is performed.
Infrastructure can be deployed to the platform of choice including bare metal,
VMs, or cloud providers like Azure, GCP, and AWS. Tasks such as cluster
deployment, management, monitoring, and upgrading can all be done within
Platform9.
A more complete overview of Platform9 features and architecture can be found
in the Platform9 documentation.

Features
• Fully managed SaaS platform for Kubernetes.
• Uses upstream Kubernetes.
• Supports Ubuntu and CentOS/RHEL.
• Zero downtime for cluster upgrades.
• Deployable on-prem to bare metal or VMs.
• Deployable to cloud providers such as Azure, GCP, and AWS.
• Single view and management of multiple Kubernetes clusters.
• Deploys highly available multi-master clusters.
• Etcd backups.
• CNI and CSI support.
• Monitoring and logging.
• CLI, Web UI, and REST API.
• Works with Terraform.
• Supports multiple region deployments.
• Multi-tenancy and multi-user support.
• SAML SSO.
• Provides up to 24x7x365 support via email, phone, or live chat and video,

depending on your plan.
• 99.9% SLA for paid plans.

Since Platform9 is a managed product, many of the problematic aspects of
Kubernetes management can be offloaded to Platform9 — which can be a huge
advantage. Features that would normally need to be built and configured by a
Kubernetes administrator are provided as part of Platform9’s offerings.
It also makes cluster instantiation and maintenance tasks much easier. This
frees up in-house resources for important engineering functions such as CI/CD,
the Software Development Lifecycle (SDLC), and providing a stable platform for
business applications.

Since Platform9 is a
managed product, many of
the problematic aspects of
Kubernetes management
can be offloaded to
Platform9 — which can be
a huge advantage. Features
that would normally need to
be built and configured by
a Kubernetes administrator
are provided as part of
Platform9’s offerings.

https://platform9.com/
https://docs.platform9.com/kubernetes/tutorials-deploy-kubernetes-on-google-cloud
https://docs.platform9.com/kubernetes/introduction-overview
https://docs.platform9.com/kubernetes/tutorials-deploy-kubernetes-on-google-cloud

 KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 10

Setup and Deployment
Platform9 can be deployed anywhere, including on fully managed bare metal or
with VMs via KubeVirt. The following example recounts using AWS and Web UI
to deploy a cluster using a Platform9 free account.
After signing up for a free account, we logged into into the dashboard to create
a new cluster. We were presented with several options and chose Amazon Web
Services with the one-click cluster setup option.
We created a Platform9 IAM user in the AWS Console and attached the policy
provided by Platform9 directly to that user. There are a number of options to
configure permissions for production.
We copied the AWS Access Key and Secret Key for the new IAM user into the
Platform9 Web UI and tested for access. From there, we continued with the
cluster creation process.
To complete the cluster creation, we set a cluster name, cloud provider (AWS),
region, and availability zone (us-west-2a). An SSH key and Route53 domain
name were also required.
Platform9 currently supports Kubernetes versions up to 1.19.6 and we used that
version for this cluster.
Finally, we clicked “create cluster.” It took a few minutes for the console to
update, and then we were presented with a list of items that were being
deployed for our cluster. An abbreviated representation appears below.

Configuration and Access
The configuration process for using Platform9 on AWS is straightforward and
requires:

• An AWS account that is not your master billing or AWS Organizations
account.

• An IAM user for Platform9. This can be a pre-existing or newly created IAM
user. You should note the Access Key and Secret Key, since you will need
them when you add the AWS cloud provider to Platform9 via the console.

• Platform9 provides a downloadable IAM policy which you will need to
attach directly to the IAM user. Better yet, we recommend adding that user
to a group and then attaching the policy to the group.

• An EC2 keypair created before you add the cloud provider in Platform9.

Platform9 can be deployed
anywhere, including on
fully managed bare metal or
with VMs via KubeVirt. The
following example recounts
using AWS and Web UI to
deploy a cluster using a
Platform9 free account.

https://platform9.com/blog/get-up-and-running-with-kubevirt-for-kubernetes-based-vm-management/
https://platform9.com/signup-flow/
https://platform9.com/signup-flow/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://platform9.com/blog/get-up-and-running-with-kubevirt-for-kubernetes-based-vm-management/
https://platform9.com/signup-flow/

 KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 11

We hadn’t yet created one when we added the AWS cloud provider to
Platform9, so it didn’t show up. Adding the EC2 keypair, then deleting and
adding the cloud provider again via the console fixed this issue.

• A region with available EC2 instances.
• A Route53 domain name that’s already configured. Since we have a test

domain for these purposes, that was already there for us.
With the above in place, add the cloud provider and select the requisite options
described above. Adding a cluster is then quite easy.

Cluster Management
Cluster management via the Platform9 console is intuitive. All actions such as
adding a cloud provider, cluster, node, or an application are done through the UI.
Deleting the cluster via the UI is just as simple, and the Dashboard provides
comprehensive visibility:

Drilling down to the new cluster itself shows more details:

Portability
Since Platform9 uses upstream Kubernetes and is certified Kubernetes
conformant, any application deployed on Kubernetes will work when using
Platform9. Since it has multicloud support, you can centrally manage all of your
Kubernetes clusters across all providers including on-prem, bare metal, and
VMs.
Lock-in isn’t an issue since Kubernetes is deployed into your own cloud
accounts or onto your own servers or VMs. Applications are portable between
clusters on different providers.

Since Platform9 uses
upstream Kubernetes and
is certified Kubernetes
conformant, any application
deployed on Kubernetes
will work when using
Platform9. Since it has
multicloud support, you can
centrally manage all of your
Kubernetes clusters across
all providers including on-
prem, bare metal, and VMs.

Platform9 North America — Mountain View, CA
800 W El Camino Real #180, Mountain View, CA 94040

650-898-7369 • info@platform9.com

 KOPS vs. EKS vs. PLATFORM9 WHITE PAPER | 12

Networking
Platform9 comes with managed CNI and Calico is the preferred plugin.
VPC, Route53, and Elastic Load Balancers are all supported on AWS. If you’re
running on-prem, Platform9 supports MetalLB for load balancing with bare
metal.

Conclusion
Evaluating various Kubernetes deployment and management solutions can
be complicated. It’s very important to keep your use case and requirements in
mind when looking for one. It will take time to evaluate, set up, configure, and
test each solution. Last, but certainly not least, you want to consider the learning
curve involved with each solution compared to the knowledge, skills, and
resources that you have in-house.
Platform9 KaaS — a simple way to get started with fully-managed Kubernetes
clusters.

Platform9 is free for up to 20 nodes. Start a free trial today!
info@platform9.com

Platform9 KaaS — a simple
way to get started with
fully-managed Kubernetes
clusters.

https://docs.platform9.com/v5.0/kubernetes/networking-cni-integrations
https://metallb.universe.tf/
https://platform9.com/
http://info@platform9.com
https://platform9.com/

