
In Partnership With

•	Creating an Optimal DevOps Experience with Distributed
Kubernetes

•	10 Considerations for Running Kubernetes at Scale

•	SaaS Managed Kubernetes: The Effective DIY Alternative

PLATFORM9 PRESENTS

Scaling Kubernetes
for the Enterprise
Joep Piscaer

INSIDE THE GUIDE:

i i

Scaling Kubernetes for
the Enterprise
By Joep Piscaer

THE GORILLA GUIDE TO...®

Copyright © 2021 by ActualTech Media

All rights reserved. This book or any portion thereof may not be reproduced or used
in any manner whatsoever without the express written permission of the publisher
except for the use of brief quotations in a book review. Printed in the United States
of America.

ACTUALTECH MEDIA
6650 Rivers Ave Ste 105 #22489
North Charleston, SC 29406-4829
www.actualtechmedia.com

PUBLISHER’S
ACKNOWLEDGEMENTS

EDITORIAL DIRECTOR
Keith Ward

DIRECTOR OF CONTENT DELIVERY
Wendy Hernandez

CREATIVE DIRECTOR
Olivia Thomson

SENIOR DIRECTOR OF CONTENT
Katie Mohr

PARTNER AND VP OF CONTENT
James Green

WITH SPECIAL CONTRIBUTIONS FROM PLATFORM9
Kamesh Pemmaraju, Bic Le, Roopak Parikh

ABOUT THE AUTHOR

Joep Piscaer is a seasoned IT professional, with 10-plus years experi-
ence as a CTO, head of IaaS and infrastructure, (enterprise) architect,
and technical consultant. His specialization is in infrastructure, cloud,
and way-of-work (DevOp, Infrastructure-as-Code). He has built
Infrastructure-as-Code toolchains, IaaS platforms, transformed
(infrastructure-focused) organizations to DevOps and Infrastructure-
as-Code ways of work.

i i i

iv

ENTERING THE JUNGLE

Introduction: The Conductor of Online Transformation� 8

Chapter 1: Considerations for Distributed Kubernetes—from
the Data Center to the Edge � 9

Variety of Deployment Models� 9

Network Issues and Multiple Kubernetes Sites� 11

Local Data Processing� 12

Security Considerations� 14

Centralized Management of Multiple Environments� 14

Focus on Your Core Business Objectives� 15

Chapter 2: Creating an Optimal DevOps Experience with
Distributed Kubernetes� 16

Platform Engineering Optimal Experience� 17

The Application Owner’s Optimal Experience� 20

Chapter 3: 10 Considerations for Running Kubernetes
at Scale� 24

Scalability� 24

Availability� 26

Upgradability� 27

Observability� 28

Performance� 29

Reliability� 30

Supportability� 31

Security� 31

Compliance� 32

Deployability� 33

v

Chapter 4: Production-Grade Kubernetes: Best Practices
Checklist� 34

Deployment Best Practices� 34

Operations Best Practices� 38

They’re ‘Best’ Practices for a Reason� 41

Work Your Kubernetes Plan� 42

Chapter 5: SaaS Managed Kubernetes: The Effective DIY
Alternative� 43

Outsourcing Makes Sense—on the Surface� 46

Focus on Business Outcomes� 50

Chapter 6: Tackling Observability in Your Kubernetes
Environment� 52

Types of Observability and Their Value� 53

Layers of Monitoring� 54

Making Observability Work for Your Business� 56

Chapter 7: Best Practices for Selecting and
Implementing Your Service Mesh� 60

Reducing Service Mesh Complexity� 62

The Service Mesh Team� 63

The Service Mesh Catch-22� 64

A Service Mesh Choice Is Not Forever� 68

Conquering Multi-Cloud� 68

Chapter 8: Distributed Edge with Managed Kubernetes� 70

A New Architecture for Responding to Compute-Intensive
Applications� 72

Bandwidth and Compute Power in a Distributed Architecture� 72

Central Management Is Still Needed � 74

Applying This Architecture to Retail, Manufacturing, and SaaS� 78

Solve Your Kubernetes-at-the-Edge Challenges� 79

vi

CALLOUTS USED IN THIS BOOK

The Gorilla is the professorial sort that
enjoys helping people learn. In the School
House callout, you’ll gain insight into
topics that may be outside the main
subject but are still important.

This is a special place where you can
learn a bit more about ancillary topics
presented in the book.

When we have a great thought, we
express them through a series of grunts
in the Bright Idea section.

Takes you into the deep, dark depths of a
particular topic.

Discusses items of strategic interest to
business leaders.

vi i

ICONS USED IN THIS BOOK

DEFINITION
Defines a word, phrase, or concept.

PAY AT TENTION
We want to make sure you see this!

WATCH OUT!
Make sure you read this so you don’t make a
critical error!

TIP
A helpful piece of advice based on what
you’ve read.

KNOWLEDGE CHECK
Tests your knowledge of what you’ve read.

GPS
We’ll help you navigate your knowledge to the
right place.

INTRODUCTION

The Conductor of Online
Transformation

Welcome to The Gorilla Guide To…® Scaling Kubernetes for the

Enterprise. If you’re reading this, it likely means you’re either think-

ing about modernizing your infrastructure, or you’re in the midst of

doing just that, and need to take things even further.

In a relatively short time, Kubernetes has become the leading platform

for enabling much of the cloud computing revolution. If you’re doing

cloud-native development, you’re probably doing it with Kubernetes.

It’s the same thing if you’re moving on-premises applications and

data to the cloud. Kubernetes is the conductor of this online transfor-

mation, and understanding how to squeeze the most out of it is crucial.

This Guide can be an important part of that process. In this book, you’ll

get a solid introduction to many of the aspects of deploying and man-

aging Kubernetes in production.

The content in this book is geared toward the practical. There’s infor-

mation and advice for getting the most out of Kubernetes, including

best practices, and what you need to know to scale up, keep it secure,

and more. We skip most of the theoretical aspects of Kubernetes in

favor of how to use it day to day.

We start with some pre-Kubernetes considerations, those things

you’ll have to decide on before deploying it in your environment.

Let’s dive in!
8

kamesh

kamesh

kamesh

kamesh
planning to run applications on-premises, in multiple clouds, or at the edge

kamesh
The title is a bit odd. The theme is that Kubernetes is a common underlying “fabric” that can bring together diverse and distributed infrastructure: multi-clouds, edge, and on-premises�

In This Chapter:
•	 The different types of Kubernetes deployment models

•	 Advantages of local data processing

•	 Security considerations and the importance of coordinating across
all environments

Kubernetes is widely recognized as the platform of choice for running

efficient, distributed, containerized applications. It’s also common to

think of Kubernetes in terms of a single, large cluster or set of clusters

running in a data center. This is certainly a common deployment ap-

proach, but it’s not the only one.

Variety of Deployment Models
Kubernetes can be deployed in many kinds of environments. The

platform is well-suited to run in micro data centers that are closer

to the edge. A branch office may only need a small cluster to support

the remote operations of an office. This kind of use case can typi-

cally run components that fit into a single rack. Kubernetes can also

run at point-of-presence sites. For example, retailers may deploy

Kubernetes clusters to physical stores and distribution centers to run

applications, store data locally, and coordinate operations with cen-

tralized processes.

Considerations for
Distributed Kubernetes—from
the Data Center to the Edge

CHAPTER 1

9

Considerations for Distributed Kubernetes—from the Data Center to the Edge 1 0

Kubernetes may also run at edge locations to support Internet of

Things (IoT) systems. A manufacturer may deploy Kubernetes in

multiple locations within a manufacturing facility to collect IoT data

and perform preliminary processing and analysis. This kind of pro-

cessing close to the environment can help compensate for unreliable

networks and long latencies that can reduce the effectiveness of

highly centralized processing.

It’s clear there’s a spectrum of cluster deployments. When you’re

considering and planning your Kubernetes strategy, it’s important

to understand where your deployment falls on that spectrum because

there are requirements particular to each. A data center cluster, for

example, may have ample resources to scale up the number of pods in

a deployment, while a micro data center is more constrained.

In the case of Kubernetes deployed at the edge, you should consider

how continuous integration/continuous deployment (CI/CD) will

work with potentially unreliable networking. The number of sites can

quickly become a factor you need to consider. Updating a single cluster

in a data center is challenging enough—updating hundreds of point-

of-presence sites is even more difficult.

Platform9, a leading managed Kubernetes vendor,
has produced a webinar1 that provides an overview of
Kubernetes use cases that includes cloud-native apps,
hybrid clouds, and edge computing scenarios.

1 https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/

https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/
https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/

Considerations for Distributed Kubernetes—from the Data Center to the Edge 1 1

Network Issues and Multiple
Kubernetes Sites
When deploying Kubernetes clusters to multiple data centers and

remote sites, the quality and capacity of network infrastructure can

impact the overall performance of the platform.

Data centers typically have high-bandwidth connectivity. Clusters are

composed of servers with high-speed network connections between

them and run in an environment with multiple racks. The combination

of high-bandwidth networking and the ability to distribute pods over

multiple racks provides the optimal environment for performant and

reliable Kubernetes clusters.

That level of network capacity extends beyond single data centers, too.

Hybrid clouds composed of resources in a data center and in one or

more public clouds can have high bandwidth dedicated direct connec-

tions between sites.

Micro data centers and point-of-presence deployments typically

won’t have the same network bandwidth available in data centers

and within hybrid clouds. Edge processors and IoT devices are even

more constrained in terms of bandwidth. This is one of the reasons

it’s advantageous to deploy Kubernetes to multiple locations—with

remotely deployed clusters, the processing is brought close to where

the data is being generated. Local processing reduces the amount of

data that must be sent to the data center and gives local sites the ability

to function autonomously in the event of a network outage.

This highlights another factor to consider when planning your

Kubernetes strategy: There may be periods of extended outage. Short

outages in well-architected deployments won’t significantly adversely

affect operations. Longer outages, however, will cause different clus-

ters to get out of sync. Changes to data will accumulate in the clusters

that are isolated by the network outage and when connectivity is re-

stored, recovery can begin and data can be synced. Depending on the

Considerations for Distributed Kubernetes—from the Data Center to the Edge 1 2

duration of the network outage, the recovery may be long enough to

impact performance and service delivery.

Local Data Processing
The ability to process data locally is a key advantage of having multiple

Kubernetes deployments. This approach, however, does make it more

difficult to deploy services to multiple clusters. Consider, for example,

the various use cases for distributed Kubernetes.

A retailer may deploy Kubernetes to a centralized server in a store, as

well as to point-of-sale systems. The centralized server could collect

data from point-of-sale systems, generate real-time reports and

dashboards for local managers, as well as coordinate services running

in a corporate data center or cloud.

5G is changing how businesses deliver services and collect data. With

significantly more bandwidth than previous generation networks,

5G enables more data-intensive applications. To achieve the higher

bandwidths, 5G networks use higher frequency signals. The disad-

vantage of this is that 5G networks need more cell towers because

the signal degrades over long distances. Those cell towers all have to

run networking services, so managing the deployment of software is

a significant challenge for carriers. Distributed Kubernetes can help

here, as well. Networking services can be deployed in containers and

updated as needed from a central location (see Figure 1).

IoT devices can also require local data processing. Machine learning

models for analyzing images or controlling autonomous vehicles are

best run locally to avoid unnecessary latency introduced by centralized

processing. Distributed Kubernetes can again mitigate the challenges

of managing software deployed on thousands of geographically dis-

tributed devices.

Considerations for Distributed Kubernetes—from the Data Center to the Edge 1 3

These three examples share some common requirements. They all

need consistent and reliable methods to update software. In addition,

these update methods have to be essentially zero-touch and automat-

ed in order to scale.

Stateful services, such as databases, bring another set of challenges to

managing multiple Kubernetes clusters. These services need persistent

storage, so you’ll need to understand how to architect the cluster to

deliver the needed read and write performance. To enable some level of

autonomy within the cluster, plan for graceful degradation of services

when the network is down.

For example, data stored on a remote cluster could be cached locally so

that data is available to local processes. When the network is available,

the databases can sync and caches can refresh.

Centralized
Control Plane

Higher
latency

Lower
latency

Limited / No
Processing

Processing Speed / Response Time

Edge
Infrastructure

Edge
Devices

Sensors
& Chips

Figure 1: The central management of data centers and edge locations

Considerations for Distributed Kubernetes—from the Data Center to the Edge 1 4

Security Considerations
Security operations need to be coordinated across all environments—

especially encryption for data at rest and key management.

Encryption at rest is required to comply with a wide variety of regula-

tions, especially when personally identifying information (PII) or oth-

er sensitive data is stored. There may be multiple levels of encryption,

starting with the storage device.

Middleware, such as databases, may also provide for encryption. For

example, some relational database management systems allow data

modelers to specify that particular columns of data should be encrypt-

ed. Applications can also provide for their own encryption policies

and methods. Regardless of the combination of encryption options

you may employ, they need to be coordinated across all Kubernetes

environments.

Key management is another security process that will need to be man-

aged across environments. Key management services can provide all

the required functionality, but you’ll still need to define policies and

monitor operations. For example, you’ll want to define policies for key

rotation and be able to verify the operation occurs.

Centralized Management of Multiple
Environments
Multiple environments can be a challenge to manage, especially as the

number of sites grows. Some clusters will be in the data center and can

be managed to some degree with existing tools. Clusters at point-of-

presence sites and on the edge need to be monitored and managed to

maintain the necessary quality of service.

Fortunately, Kubernetes has auto-healing capabilities that reduce the

need for human intervention. Unhealthy pods are replaced automati-

cally without requiring a DevOps engineer to log into a cluster, identify

Considerations for Distributed Kubernetes—from the Data Center to the Edge 1 5

the failing pods, and replace them. Auto-healing also promotes auton-

omy—if the network is down, the cluster can continue to function and

correct for some failure within the system.

Focus on Your Core Business Objectives
Kubernetes is moving beyond the data center to micro data centers,

point-of-presence facilities, and even the edge. Managing Kubernetes

is difficult when it’s isolated to a data center, but multiple deployments

in different environments compound your management challenges.

How to respond to those challenges is the subject of Chapter 2.

In This Chapter:
•	 Platform engineering teams should treat the platform as a product

•	 The importance of consistent policies, practices, and tools

•	 How application owners can ensure an optimal developer
environment

As mentioned in Chapter 1, Kubernetes is widely recognized as a

platform that enables highly efficient use of infrastructure, but orga-

nizations need to understand those benefits are maximized when the

developer experience itself is optimized.

Developers are increasingly assuming responsibilities for systems

operations. In the past, it was common to have a separate team of sys-

tems administrators responsible for deploying applications, monitor-

ing resource use, and responding to incidents that disrupted services.

Developers who use agile methodologies are more likely to employ

practices that include responsibility for ensuring their software oper-

ates efficiently and reliably.

This is understandable, since one aspect of agile engineering practices

is the frequent release of new versions of services. Rather than hold up

the release of an update so that multiple features can be included, it’s

more efficient to release small changes continually.

Creating an Optimal DevOps
Experience with Distributed
Kubernetes

CHAPTER 2

16

1 7Creating an Optimal DevOps Experience with Distributed Kubernetes

CI/CD pipelines, coupled with version control platforms that promote

collaboration, enable this kind of rapid release of new features. It also

means that the developers who are working in the code and revising

it are in the best position to understand the cause of performance or

reliability problems.

Platform Engineering Optimal
Experience
Developers depend on a stable environment to work. This entails high

uptime, reliability, and performance. Platform engineering teams

should treat the platform as a product. They provide this platform for

developers, enabling them to create services for their customers.

This includes building teams, processes, and a culture that continually

improves—not just sustains—the platform. Using agile approaches,

developers can deliver initial applications on a platform they man-

age— but expect to have platform engineers take over responsibility

for the platform.

Kubernetes can help deliver the optimal engineering experience. It’s

designed to automate and orchestrate reliable computing resources

for containerized applications. One important aspect of Kubernetes is

that it can be deployed in multiple environments, including:

•	 Centralized data centers, either on-premises or colocated in a

third-party data center

•	 Micro data centers used in remote offices

•	 Point-of-presence locations such as retail stores

•	 Edge computing settings for IoT deployments

1 8Creating an Optimal DevOps Experience with Distributed Kubernetes

Consistent Policies, Practices, and Tools

Consider the challenges of complying with regulations and policies

while maintaining an agile, rapid-feature-delivery engineering envi-

ronment. There are multiple dimensions of compliance that must be

attended to.

For example, developers, who are also operations managers, need

tools to help ensure authentication mechanisms are in place. In many

cases, authentication and identity management services are provid-

ed by a centralized service that needs to be accessible from various

Kubernetes deployments.

Highly distributed systems like Kubernetes are constantly generating,

storing, and transmitting data. Many regulations governing privacy

and the control of sensitive information have rules about protecting

the confidentiality of data. To meet these requirements, it’s a best

practice to employ encryption for data in motion and for data at rest.

Kubernetes environments should be deployed in ways that provide

these encryption services by default. Application developers shouldn’t

have to learn the intricacies of configuring full disk encryption or

setting up TLS connections between nodes. Role based access con-

trols (RBACs) are essential for securing the platform. Given the large

number of services and tenants, this can be a difficult task and requires

tooling to support and maintain proper RBAC configurations.

The ability to deploy Kubernetes to a wide variety of
environments is a significant advantage over deploying
customized, case-specific servers. With a single, common
platform for executing workloads, developers can spend
less time on operational issues with the help of tooling
that supports the Kubernetes platform.

1 9Creating an Optimal DevOps Experience with Distributed Kubernetes

Kubernetes should be deployed with controls in place to support

other governance requirements. For example, security scans should

be configured to run reliably on all clusters. Again, this is a necessary

capability, but not one that should require significant developer time.

Tooling should be in place to help with capacity planning and cost

control. Kubernetes is designed to allocate resources to workloads that

need them. Those resource demands can, and often do, change over

time, so it’s important to monitor resource utilization and growth rates

in workloads. If a cluster has insufficient resources, developers may be

forced to limit features or find other workarounds to deal with the lack

of capacity. Poor capacity planning can introduce significant friction in

the development process and slow the creation of new services.

Organizations are increasingly adopting multi-cloud platforms,

so you’ll need to consider integration of different systems. Legacy

on-premises applications and servers may be used alongside servers

running in a public cloud, for instance. Kubernetes is well suited to

these kinds of deployment models, but there must be tooling in place

to maintain the reliability of these systems.

The Negative Impact of Shadow IT
When appropriate tooling isn’t in place and there’s insufficient cen-

tralized support, developers will likely develop their own solutions

to operational challenges. For example, when platform tools like CI/

CD pipelines aren’t centrally standardized, departments or teams of

engineers may implement their own solutions.

This is problematic for several reasons. For one, it’s inefficient to have

multiple teams duplicating work. It also means that individual teams

are responsible for maintaining tools and ensuring they’re deployed in

compliance with policies and regulations. They also become responsi-

ble for ensuring that all service-level agreements (SLAs) are being met.

These kinds of shadow IT practices lead to inconsistent management

practices. Instead of a common operations model, organizations are

2 0Creating an Optimal DevOps Experience with Distributed Kubernetes

left with a fractured DevOps situation that makes it more difficult for

teams to collaborate. Teams will develop different procedures and use

different tools, and this often means each team takes on learning on

its own and may not benefit from what others have experienced.

Clearly, a consistent set of policies, practices, and tools across an

organization is essential to maintaining an optimal developer expe-

rience. It’s also important to consider what might be required for an

application owner’s optimal experience.

The Application Owner’s Optimal
Experience
Application owners have an obvious stake in ensuring an optimal

developer environment. Key considerations from their perspec-

tive include:

•	 Ensuring developers have needed resources

•	 Standardizing on commonly needed resources and middleware

“Shadow IT” refers to any IT asset—hardware,
software, applications—that a user downloads and uses
without the organization’s knowledge. It’s becoming more
prevalent in the cloud era, as there is more access to more
technology.

Some of the biggest problems this causes for IT include
security and compliance issues.

Some estimates of the damage that Shadow IT causes put
it in the trillions of dollars every year. That makes it crucial
for companies to control and eliminate as much Shadow
IT as possible.

kamesh
Seems like an overstatement without a reference. I would remove this unless backed by a reference link.

2 1Creating an Optimal DevOps Experience with Distributed Kubernetes

•	 Using tools to streamline package management within Kubernetes

deployments

Key Resources for Developers
Key resources for developers span the development cycle. There

should be support for full stack development. UI developers typically

work with frameworks for creating complex Web interfaces, while

back-end developers are more likely to need tools to help optimize

high-performance code.

Tooling should also include support for version control and CI/CD.

These tools are becoming more feature-rich and integrated so that as

soon as changes are checked into a repository, they can trigger a build,

with testing and eventual release to follow.

Service discovery and application catalogs are important for en-

suring developers know the kinds of services available in the envi-

ronment. These tools can foster the sharing of services and reduce

redundant code.

Standardizing Commonly Needed Resources
Application owners should also consider standardizing commonly

needed resources and middleware. For example, multiple services

may need a relational database back end. There are many high-quality

options to choose from, including both open source and commercial

products.

While different relational databases have distinct features and ca-

pabilities, application owners must ask if the cost of supporting two

or more databases is outweighed by the benefit of those specialized

features. In many cases, the economics favor standardizing on a single

kind of database.

It’s also important to make shared components available in a central

catalog that are available for developers to easily deploy with a few

2 2Creating an Optimal DevOps Experience with Distributed Kubernetes

clicks. This provides the governance that the operations teams need

and the self-service agile experience that developers crave.

Streamlining Package Management
Similarly, organizations should standardize on load balancers and

monitoring tools. While different load balancers may have different

features, the core job of a load balancer isn’t likely to vary much among

services running in the same environment.

A single, consolidated monitoring tool should be selected as well, with

performance metrics collected in a single tool. This allows for more

comprehensive analysis of performance monitoring data than if the

data were spread across multiple tools.

Logging and distributed tracing tools are also important for under-

standing the state of your systems, identifying bottlenecks, and un-

derstanding the root causes of performance problems.

Service meshes, like Istio, provide additional services on top of

Kubernetes (see Figure 2). Standardizing on a single service mesh

Ingress
Gateway

Front End

Control Plane Egress Gateway

Proxy
Sidecar

Back End

Proxy
Sidecar

Database

Proxy
Sidecar

Figure 2: Service mesh traffic overview

2 3Creating an Optimal DevOps Experience with Distributed Kubernetes

across all deployments of Kubernetes will also improve the overall util-

ity of Kubernetes from a developer and application owner perspective.

For all of the benefits of Kubernetes, there are some challenges to

using the platform. Within a single cluster, dozens of packages may be

deployed, all of which must be monitored and maintained along with

other applications. It can be a challenge to keep track of packages and

their state in a single cluster, but the workload is multiplied when you

include Kubernetes deployments in distributed and edge computing

environments.

Automation is required to support package management. Fortunately,

Helm and Kustomize are two such package managers that can stream-

line package management.

The promise of Kubernetes to more efficiently employ computing and

storage resources is best realized when you take into account how

Kubernetes is used and maintained by developers. Kubernetes is com-

plex, and as responsibility for managing clusters moves from a small

number of clusters in a single data center to hundreds or thousands of

distributed clusters, there’s a risk of not knowing how to run such a

distributed platform optimally. That’s where Chapter 3 comes in.

In This Chapter:
•	 The developer’s more expansive view of availability

•	 The more complex a system becomes, the more important it is to
be able to determine the state of that system at any time

•	 Maintain appropriate levels of performance

Kubernetes is designed to scale to distributed computing platforms far

larger than the systems many enterprises use. Moreover, when you de-

ploy thousands of microservices over a large number of geographically

distributed servers that need to be available virtually all of the time,

operating that platform becomes increasingly complicated. Before you

enter the world of large-scale Kubernetes deployments, here are 10

considerations to keep in mind as you plan your system.

Scalability
Many engineers start working with Kubernetes by using small clusters.

A set of five nodes is sufficient to work with Kubernetes services, get

to know the commands, and practice basic operations, like deploying

new versions of services and creating persistent storage volumes.

10 Considerations for
Running Kubernetes
at Scale

CHAPTER 3

24

2 510 Considerations for Running Kubernetes at Scale

While this scale is well-suited for learning about Kubernetes or sup-

porting a small set of applications, it won’t reveal the issues you’re

likely to encounter when you start running hundreds of nodes in

a cluster.

One of the issues with large deployments is scaling the number of pods

in a deployment or nodes in a cluster. In the case of a small five-node

cluster, if the workload increases by 20%, you can manually add an-

other node to the cluster. You could keep the cluster at the increased

size or reduce the number of servers sometime in the future when the

load decreases. The disadvantage of this approach is obvious. Manual

intervention to scale resources isn’t a viable option when working with

large deployments and dynamic workloads.

Kubernetes employs autoscaling to adjust the number of nodes in a

cluster. As the demands for computing resources change, the auto-

scaler can increase or decrease the number of nodes. When nodes in

the cluster are running at high CPU utilization for extended periods,

the autoscaler will add nodes. Similarly, if nodes become idle for some

period of time, they’re removed from the cluster. Adjusting the num-

ber of nodes in a cluster is referred to as horizontal scaling.

Another way to scale is to use servers with more resources. For exam-

ple, instead of deploying nodes with 16 CPUs and 96GB of memory,

you could use nodes with 64 CPUs and 400GB of memory. This is called

vertical scaling (see Figure 3).

Vertical
Scaling

Horizontal
Scaling

Figure 3: Horizontal vs. Vertical scaling of nodes

2 610 Considerations for Running Kubernetes at Scale

Scaling is an important consideration because it directly impacts the

availability of services. A resource-constrained cluster doesn’t have

the capacity to process additional workloads. Over-provisioning is

an option, but it’s a costly one. A better approach is to ensure you’ve

instrumented the cluster so you can collect metrics about its state and

automatically respond to changing workloads.

Availability
The formal definition of availability is the percentage of time a system

is ready for use. This way of thinking about availability is useful when

working with SLAs. It’s also an appropriate way to think of availability

from a user’s perspective—a system is available if they can use it. A

developer’s perspective is slightly different.

Developers have a more expansive view of availability. It includes en-

suring a production environment is functioning and able to meet the

workload on the system at any time. Developers also depend on de-

velopment and test environments being available to do their work. To

ensure developers have the necessary environments available to them,

it’s important to create repeatable processes for deploying clusters

and services.

The repeatable processes for developer environments may be different

from the repeatable processes used in production environments. Site

reliability engineers (SREs), for example, may have a specific set of

design principles they apply to production environments.

For example, there may be different levels of health checking,

monitoring, and alerting. SLAs will likely be different, as well. Also,

developers will likely have different needs from SREs. For example,

developers shouldn’t have administrative access to a production clus-

ter, but they should have administrative privileges to a cluster in their

development environment, rather than depend on others to configure

and maintain it.

2 710 Considerations for Running Kubernetes at Scale

Upgradability
Kubernetes is under active development. To ensure you have access to

the latest features, you need to plan for upgrading clusters. It’s easy

to begin working with Kubernetes and even run production workloads

without thinking about how you’ll upgrade the cluster.

Consider a typical scenario of how an enterprise might start using

Kubernetes. A group of developers and a business sponsor decide to

develop a proof of concept (PoC) system on a small cluster. The de-

velopers want to show results as fast as possible, so they choose the

easiest installation method to get Kubernetes up and running.

Next, they incrementally add other services, such as a database,

which increases complexity to the overall system. Wanting to show

a realistic use case, the developers then deploy an application. The

PoC is well received and decision-makers agree to make the service

available in production.

Now, the developers of the PoC are faced with operationalizing a

system that wasn’t designed for the demands of a production environ-

ment. They’ll have to install monitoring and logging tools. Of course,

To ensure upgradability, plan for it from the start of a
Kubernetes project. Often upgrades can lead to downtime
if not planned carefully. For high SLA and mission-critical
applications, upgrades need to be designed to avoid
downtime, which is exceptionally difficult without
appropriate safeguards. Platform9 has a beneficial
blog post1 that can help pave the way to successful
Kubernetes upgrades.

1 https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-

yourself/

https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-yourself/
https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-yourself/
https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-yourself/

2 810 Considerations for Running Kubernetes at Scale

the business application running in the cluster will need to be updated,

so they’ll have to integrate with a CI/CD platform. As you can see, de-

cisions from choosing an installation method to integrating with a CI/

CD platform can’t be made in isolation.

This process continues with even more tools added to the cluster,

which essentially grows organically and incrementally according to

emerging requirements. This is unfortunate. To ensure a cluster is

upgradeable, organizations should plan for full lifecycle development.

This is challenging when working with Kubernetes, however, because

most organizations don’t have teams of experts, and often have far

fewer Kubernetes experts than needed. As a result, production systems

are difficult to upgrade and, rather than risk disrupting services be-

cause of an issue updating the platform, enterprises continue to run

older versions of Kubernetes.

With a properly established CD pipeline that allows for rollbacks, Blue-

Green and Canary deployments, enterprises can be more confident in

upgrading to newer versions more frequently. This helps avoid run-

ning significantly out-of-date versions of the platform.

Observability
The more complex a system becomes, the more important it is to be

able to determine the state of that system at any time. Observability

is the term for this. Usually, when developers talk about observability,

they’re referring to collecting metrics, logs, and distributed traces

from servers and processes. These types of information are essential

for diagnosing and correcting problems.

For example, a pod in a Kubernetes cluster may be constantly re-

starting. How would someone go about troubleshooting this? They

might look into problems with the cluster, like the loss of a quorum

or a problem on a single node, such as no free disk space—and this

problem is compounded when dealing with multiple clusters running

in different locations and clouds.

2 910 Considerations for Running Kubernetes at Scale

There are many possible contributing factors to problems with cluster

operations. Curated dashboards showing key metrics can help devel-

opers and SREs focus on the most important pieces of information.

Given the overwhelming number of metrics and logs that could be

observed, it helps to have experts identify which to include in your

dashboard. In fact, this principle applies to all of the considerations

outlined here.

Performance
When planning for Kubernetes at scale, consider how you’ll maintain

appropriate levels of performance. Specifically, is your system able to

meet compute, storage, and network needs at any point in time? Think

about performance at both an application and a cluster level.

At the application level, deployments should be performant.

Deployments consist of multiple pods, so pods need to be performant

for the deployment to be performant. Of course, with a sufficient

number of pods, the deployment can continue to meet the needs of

workloads even if some small number are not functioning as expected.

At the cluster level, you should consider how to maintain the overall

performance of a cluster. This is largely a factor of how performant the

nodes are, but other cluster-level properties, such as how fast a cluster

can autoscale, can impact the overall performance of the system.

The geographic location of the cluster nodes that Kubernetes manages

is closely related to the latency that clients experience. For example,

nodes that host pods located in Europe will have faster DNS resolve

times and lower latencies for customers in that region.

3 010 Considerations for Running Kubernetes at Scale

Reliability
Reliability is a property of a system that’s closely related to availability.

The formal definition of reliability is a measure that takes into account

the mean time between failures and the mean time to recovery.

Reliability in Kubernetes is determined by the ability of the system to

provide resources when needed and the ability of systems software

to function as expected. The ability to scale resources up is especially

important to reliability. Being able to observe the state of a cluster and

respond to problems is also a significant factor for maintaining highly

reliable clusters and services.

Working with Images
It’s best to use container-optimized imag-

es so that Kubernetes can pull them faster

and run them more efficiently.

What’s meant by being optimized is

that they:

•	 Only contain one application or do one thing

•	 Have small images, since big images aren’t so portable over
the network

•	 Have endpoints for health and readiness checks so that Kubernetes
can take action in case of downtime

•	 Use a container-friendly OS (like Alpine or CoreOS) that make them
more resistant to misconfigurations

•	 Use multistage builds so that only the compiled application (and not
the dev sources that come with it) is deployed

Lots of tools and services let you scan and optimize images on the fly. It’s

important to keep them up to date and security-assessed at all times.

3 110 Considerations for Running Kubernetes at Scale

Supportability
Kubernetes clusters, like any complex system, require sufficient

support to be maintained properly. Supportability is a measure of how

much effort is required to keep clusters and services functioning.

Systems can be available and reliable, but only with human interven-

tion. Kubernetes is designed to minimize the need for that interven-

tion. For example, Kubernetes monitors the status of pods and replaces

them automatically when they fail health checks.

In addition to the core Kubernetes components, supportability en-

compasses other components that may be deployed in a cluster. For

example, a cluster that supports the training and use of machine

learning models may support Kubeflow, a deployment manager for

machine learning. Supportability also needs to extend to services that

users will need to use Kubernetes effectively, including Prometheus,

Fluentd, Istio, and Jaeger.

When scaling up a Kubernetes cluster, consider how you’ll continue

to support existing services, as well as additional services that may be

needed in the future.

Security
Security is always a consideration when deploying services. As an

administrator of Kubernetes clusters, you’ll need to attend to multi-

ple security mechanisms, including access controls, encryption, and

managing secrets.

Access controls depend on identity management. There must be a way

to represent users and service accounts within the cluster. To stream-

line identity management, users should be assigned to roles or groups

that have permissions assigned to them.

You should also consider how you’ll enforce the principle of least priv-

ilege—granting only the permissions a user needs to perform their job

3 210 Considerations for Running Kubernetes at Scale

and no more. In addition to these authorization considerations, you’ll

also need to deploy authentication methods that support the way users

employ the cluster.

Also, plan for how and when you’ll use encryption. Sensitive and con-

fidential information should be encrypted at rest, as well as in transit.

You should plan to provide a mechanism for storing secrets, such as

database passwords and API keys. Developers may be used to storing

secrets in configuration files and setting environment variables with

those secret values, but a centralized repository for managing secrets

is more secure.

Compliance
Closely related to security is compliance. As the size of Kubernetes

clusters grows, it becomes imperative to define policies that allow you

to meet regulatory requirements with minimal manual intervention.

Pay particular attention to audit policies and how they’re used to

demonstrate compliance.

Platform9 has a useful blog entry that discusses
Kubernetes-related security issues in-depth: Kubernetes
Security: What (and What Not) to Expect.1 It includes:

•	 An architectural overview of components

•	 Built-in features

•	 What is not secured by default

•	 Securing at scale

1 https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/

https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/
https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/
https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/

3 310 Considerations for Running Kubernetes at Scale

Also, consider where Kubernetes is deployed. Clusters aren’t con-

strained by political boundaries. Know which regulations you must

comply with if a cluster is deployed in multiple countries or in states

with applicable regulations, such as GDPR in the European Union and

the California Consumer Privacy Act in the United States.

Deployability
Kubernetes runs in a variety of environments. Some clusters are de-

ployed on-premises in a data center while others are in a public cloud.

Hybrid clouds are common, as well. At the other end of the spectrum,

Kubernetes may be deployed to a point-of-presence system, such as

those in retail stores. IoT systems can benefit from computing re-

sources at the edge, which can be delivered using Kubernetes.

Consider how you’d deploy updates to Kubernetes in these various en-

vironments. Is the process automatable? How much human interven-

tion is required to deploy Kubernetes? If you plan to scale Kubernetes,

you should strive for zero-touch automated procedures.

With these considerations in mind, it’s time to move onto the more

practical aspects of running Kubernetes in production. The next chap-

ter is full of best practices that will help you get the most out of your

containerized environment.

In This Chapter:
•	 Deployment best practices

•	 Operations best practices

•	 Platform9 Managed Kubernetes

As with other enterprise platforms, there’s a broad array of require-

ments to keep Kubernetes clusters functioning and running efficiently.

Here are several best practices to employ when running Kubernetes in

production.

Deployment Best Practices
Kubernetes environments are highly dynamic. Services are deployed

and updated frequently. Nodes are added and removed from clusters.

Clusters are spun up and down according to workload.

Kubernetes handles much of the management of this lifecycle, but

when it comes to deploying services, much of the responsibility rests

with IT professionals. To streamline the ability to deploy and maintain

Production-Grade
Kubernetes: Best Practices
Checklist

CHAPTER 4

34

3 5Production-Grade Kubernetes: Best Practices Checklist

services, keep in mind deployment best practices—these ones in

particular:

•	 Ensure open and flexible environments

•	 Standardize the container build process

•	 Ensure self-service

•	 Manage applications and storage

Ensuring Open and Flexible Environments
Kubernetes runs on a variety of computing infrastructure, including

commodity servers. Existing hardware can be redeployed to run

Kubernetes along with newly procured servers. You have your choice

of running Kubernetes on bare metal, virtual machines (VMs), or in

public clouds.

If you already have an established VM environment, running

Kubernetes in that environment can be a logical choice. If you would

rather not maintain physical infrastructure, then running Kubernetes

in a public cloud is a good option and one with low barriers to entry.

Kubernetes has also prompted the development of additional open

source software that runs on the platform. Tools like Helm for

Platform9 has an informative blog post1 about run-
ning Kubernetes on-premises. It includes the challenges,
opportunities and benefits, and considerations for running
Kubernetes on bare metal. It also details infrastructure
requirements and best practices for on-premises DIY
Kubernetes implementations.

1 https://platform9.com/blog/kubernetes-on-premises-why-and-how/

https://platform9.com/blog/kubernetes-on-premises-why-and-how/
https://platform9.com/blog/kubernetes-on-premises-why-and-how/

3 6Production-Grade Kubernetes: Best Practices Checklist

deployment and Istio for service management are open source tools

that extend the capabilities of the Kubernetes environment.

Standardize the Container Build Process
Containers are a key building block of a microservice architecture,

and how they’re managed directly impacts the efficiency, reliability,

and availability of services running in Kubernetes clusters.

The container build process should be automated using a CI/CD sys-

tem. Open source tools such as Jenkins are widely used CI/CD tools.

Major public cloud providers also offer CI/CD services. These tools

reduce the workload on developers when deploying a service. They

also allow for automated testing prior to deployment, and can support

rollback operations when needed.

Container images should be stored in an image repository. This cen-

tralized store should also support image scanning to check for security

vulnerabilities. By providing an image repository, you can promote the

consistent use of approved images. This reduces the chance of deploy-

ing a misconfigured container. Developers have a range of container

registry options, including Docker Hub,1 JFrog Container Registry,2

and JFrog Artifactory.3

For example, a Docker image may require that several tools be in-

stalled, and those tools may require different versions of the same li-

brary. Someone unaware of the potential conflict might fail to properly

install the library’s multiple versions. This could lead to deploying an

image that will fail in production and require a team of DevOps engi-

neers to diagnose in production.

A standardized image build process helps remediate failed deploy-

ments. For example, the CI/CD pipeline can be configured to perform

1  https://hub.docker.com/

2 https://jfrog.com/container-registry/

3 https://jfrog.com/artifactory/

https://hub.docker.com/
https://jfrog.com/container-registry/
https://jfrog.com/artifactory/
https://hub.docker.com/
https://jfrog.com/container-registry/
https://jfrog.com/artifactory/

3 7Production-Grade Kubernetes: Best Practices Checklist

a canary deployment, in which a small amount of traffic is routed to a

newly deployed service. If there’s a problem, only a small number of

users are adversely affected.

Alternatively, the CI/CD process could employ a rolling deployment

in which pods are replaced one by one, allowing for an incremental

transition to a new version of a service. Of course both canary and

rolling deployments could be done manually, but that would be more

time-consuming and error-prone (see Figure 4).

As part of the image build process, be sure to include a monitoring

mechanism. Some monitoring tools use agents to collect server and

application performance data and send it to a centralized data store for

reporting and alerting. It’s important to have visibility into the per-

formance of services so you can correct issues that can’t be addressed

directly by Kubernetes.

Figure 4: Deployment models like rolling and canary deployments help identify
any issues with a new deployment before it causes any significant impact to
production

Before

V1 V1 V1

During

V1 V1 V1 V2 V2 V2

After

V1 V1 V1 V2 V2 V2

Before

V1 V1 V1 V1 V1 V2

During After

V2 V2 V2

3 8Production-Grade Kubernetes: Best Practices Checklist

Ensure Self-Service
Developers should not have to coordinate with IT administrators to

deploy and monitor services running in Kubernetes clusters. To ensure

developers can manage deployments, it’s important to provide tools

for deploying and scanning applications.

For example, Helm is a package manager for Kubernetes and supports

defining, deploying, and upgrading applications, which can streamline

the management of applications. Security scanning tools should be in

place as well, to help developers identify vulnerabilities in applications

before they’re deployed.

Applications and Storage
With developers and admins alike working across multiple environ-

ments, it’s also important to have policies in place to enable efficient

use of resources. Consider RBAC policies and limits to ensure resources

are used fairly, and that no single deployment consumes an excessive

amount of resources.

Operations Best Practices
In addition to employing deployment best practices, there are several

operations best practices you should strive to implement, including:

•	 Single pane of glass visibility

•	 Scaling best practices

•	 Governance and security

•	 Upgrading

Together, these best practices can help reduce the operational over-

head associated with maintaining Kubernetes clusters.

3 9Production-Grade Kubernetes: Best Practices Checklist

Cluster Observability
The idea behind single pane of glass visibility is that all information

needed to understand and diagnose the current state of the cluster,

deployments, and other components should be available from a

single tool.

For example, from a single application, administrators should be able

to configure monitoring, analyze monitoring data, and specify alerts

triggered by that monitoring data. Plan to use a standardized set of

monitoring tools for collecting, storing, analyzing, and visualizing

performance monitoring data.

This monitoring functionality can also be used to monitor compliance

with SLAs. Another advantage of standardizing is that you can define

templates to promote reusability.

Scaling Best Practices
When scaling with Kubernetes, you have the option of scaling the size

of a cluster or increasing the number of clusters. When workloads

vary widely, the Horizontal Pod Autoscaler can be used to adjust the

number of nodes in a deployment. Kubernetes also has a Vertical Pod

Autoscaler, but that’s currently in beta release and shouldn’t be used

in production.

One scaling question you’ll face is whether to run one cluster or multi-

ple clusters. Kubernetes can scale to thousands of nodes and hundreds

of thousands of pods, so a single cluster can meet many use cases.

There are, however, some advantages of using multiple clusters. One

is reliability. In the event of a cluster failure, all workloads are affected

in a single cluster environment. Also, with multiple clusters different

development teams can manage their own clusters—and that can in-

crease the velocity of each team, if it doesn’t need to coordinate cluster

changes with other teams.

4 0Production-Grade Kubernetes: Best Practices Checklist

Governance and Security

As with any enterprise platform, you’ll need to consider governance

and security. To start with, plan to implement granular RBAC. These

can be used to implement the principle of “least privilege,” which

states that users should have only permissions they need to perform

tasks assigned to them and no more.

Platform9: Your Trusted
Kubernetes Partner
Kubernetes is a powerful tool, but that

power comes at the price of complexity.

And the more you scale up and out, the

more complex it gets.

That’s why it can make sense to call in the

cavalry. Bringing in a partner who specializes in Kubernetes can get you

up and running much more quickly, and help you manage the new infra-

structure more efficiently.

Platform9,1 for example, helps automate Kubernetes, freeing you from the

significant burden of a DIY approach. This is what the company does, and

it’s an expert at it.

Its managed Kubernetes platform, known as PMK, provides the ability

to easily run Kubernetes at scale. It allows you to leverage your existing

environments, with no operational burden on your IT staff. You get the

power of Kubernetes without the hassle of managing the complexity.

When you’re ready to do more with your Kubernetes, be sure to check out

Platform9’s free sandbox and freedom plan,2 which users can try out at

no charge.

1 https://platform9.com/

2 https://platform9.com/sandbox/kubernetes/

https://platform9.com/
https://platform9.com/sandbox/kubernetes/
https://platform9.com/
https://platform9.com/sandbox/kubernetes/

4 1Production-Grade Kubernetes: Best Practices Checklist

Use audit trails to track security-related changes in the system. For

example, operations, like adding a user and changing permissions,

should be logged. Also, use encryption to secure communications both

within and outside of the cluster.

It’s a best practice to scan applications for vulnerabilities. In a similar

way, you should review vulnerabilities in Kubernetes software and

patch as necessary. This is a situation in which it may be beneficial

to have multiple clusters, because a patch can be deployed to a single

cluster and evaluated before rolling it out to others.

Upgrading
Kubernetes is under active development, which provides for new

functionality and improved reliability. As part of your Kubernetes

management strategy, plan to upgrade while supporting production

workloads. For example, the master will need to be upgraded before

nodes. To avoid disruption, you can run multiple master nodes and

upgrade one master at a time or use rolling upgrades to ensure zero

downtime during the upgrade process.

Similarly, nodes can be upgraded incrementally. Also plan to patch

and upgrade operating systems running on nodes. Be sure to maintain

up-to-date backups. Backups are an important insurance measure for

recovering from a failed upgrade.

They’re ‘Best’ Practices for a Reason
Kubernetes is a complex platform that provides for highly scalable,

efficient use of computing and storage resources. But it can also be

highly problematic for companies that just try to “wing it” and figure

out what to do as they go along.

Don’t let that be you. Following the best practices outlined here will

help to ensure that you realize the optimal benefit of your Kubernetes

investment.

4 2Production-Grade Kubernetes: Best Practices Checklist

Work Your Kubernetes Plan
As you’ve seen through these first four chapters, Kubernetes is a pow-

erful way to orchestrate your container environment. That’s why it’s

become the de facto method for the IT industry. But that power comes

at the price of complexity—and as your operations scale up, it becomes

more difficult.

It’s a challenge, to be sure, to properly deploy and run Kubernetes. But

the sizable advantages that come along with it make the effort well

worth it. The key is to understand what you want to do with containers

before deploying your first pod. Spinning them up without a well-

thought-out plan can be inviting disaster.

The next four chapters focus on Kubernetes operations, which include

monitoring, upgrading, restoring, troubleshooting, security patching,

logging, alerting, load balancing, exception handling, DNS services,

and more. We’ll focus on three major areas of your infrastructure that

require standardization and consolidation:

•	 Monitoring and observability

•	 A service mesh for communication

•	 Automated management and updates of multiple distribut-

ed locations

First, let’s look at SaaS managed Kubernetes: the effective DIY

alternative.

In This Chapter:
•	 Outsourcing Kubernetes to a managed service provider

•	 Avoiding vendor lock-in

•	 Focus on business outcomes

The operational complexity of Kubernetes is a major hurdle for many

organizations, creating a barrier to entry that’s hard to solve: qualified

engineers are expensive, and DIY solutions have a long lead time and

are very complex.

This means organizations are missing out on the advantages that

Kubernetes provides for development teams, like accelerating soft-

ware releases with more control over the infrastructure to optimize

performance and cost.

This chapter helps you understand how to remove complexity and

decrease lead time for Kubernetes using a cloud-agnostic, managed

solution approach.

Kubernetes is a powerful infrastructure platform for developers. Its

self-service nature allows developers to take control of releasing

software to production without the direct involvement of Ops teams.

This helps development teams increase their velocity, enabling them

to release more often and more quickly, with more control over the

infrastructure than ever to optimize cost, performance, and resilience.

SaaS Managed Kubernetes:
The Effective DIY Alternative

CHAPTER 5

43

4 4SaaS Managed Kubernetes: The Effective DIY Alternative

The downside is increased complexity. With all of its advantages when

it’s up and running, Kubernetes is notoriously hard to deploy and

manage. Its open, pluggable architecture is complicated and can be

overwhelming for those new to Kubernetes.

This creates high barriers to entry for Ops teams wanting to design and

implement production-grade clusters that provide high resilience and

good performance at a reasonable cost.

In the architecture diagram in Figure 5, it becomes clear that

Kubernetes is a complex solution with many moving and interchange-

able parts.

Even after the initial learning curve is conquered, new challenges

await. Kubernetes clusters tend to have a shorter lifespan than virtual

infrastructure clusters, and are often built for a very specific function,

such as a single application. This is especially true in environments

with ephemeral compute needs, like cloud computing. Here, clusters

here are constantly spun down, recycled, and replaced by new clusters.

Ctrl Plane - 1,2...n

Node 1

etcd

Cloud
Provider

Network Edge

controller
manager

kube
apiserver

scheduler

End Users

Pods

System Services

Container Runtime

kubelet

Node 2

Pods

System Services

Container Runtime

kubelet

Load
Balancer

kubectl

Figure 5: Kubernetes architecture is difficult to understand and master

4 5SaaS Managed Kubernetes: The Effective DIY Alternative

Kubernetes, Microservices,
and Modern Development
The powerful benefit offered by container

technologies such as Kubernetes is also the

source of the difficulties that containers

present. They’re part of an architecture for

computer applications that combines:

•	 Multiple services, such as databases, that communicate by ex-
posing APIs

•	 A microservice architecture, which is a modern form of the classic pro-
gramming practice of breaking programs into independent modules

•	 Cloud deployment, which makes it easy to scale up or down in re-
sponse to demand

This type of architecture is becoming increasingly popular for several

reasons First, it allows a company to spin up new instances—virtual

representations of a physical computer—as demand increases, such as

if it advertises a sale and thousands of people suddenly visit its web site.

The company saves money by terminating those instances when the

spike ends.

The architecture is also fault-tolerant. If a physical computer blows a

fuse, you have to power up a new computer. In a virtual or containerized

environment, you just press a button on the cloud provider’s graphical

interface—or even better, run a monitoring system to detect failures and

to automatically launch new instances through the cloud provider’s API.

Less obvious, but equally important, the containerized architecture sup-

ports a faster, more distributed development cycle. Programmers in dif-

ferent places can work on different microservice components and indulge

in their own release cycles, without having to communicate frequently

with the developers of other components. Because many new features

require changes to only a single component, developers can keep the users

happy with fast-changing stream of new features, or can react quickly to a

change in the business model.

4 6SaaS Managed Kubernetes: The Effective DIY Alternative

This poses major challenges in the way Ops teams work, requiring new

operational processes. It also requires new technical skills, which use

up team resources that could have been better spent on other, more

business-focused initiatives.

Indeed, chances are that Ops teams are already stretched thin, and

putting in the time to master the day-to-day chores of managing a

cluster’s lifecycle is simply another added burden. Ops is already busy

maintaining existing infrastructure, from WAN and LAN networking,

to virtual compute infrastructure, client management systems, and

many others.

Outsourcing Makes Sense—on the
Surface
It is therefore logical to outsource Kubernetes to a managed services

provider. Luckily, there are many options to choose from, across a

spectrum of different types of solutions.

On one end of this spectrum are software distributions that provide a

framework, but leave you alone to figure out how it works. While better

than rolling out your own Kubernetes distribution, these options still

require you to do all of the heavy lifting yourself, and don’t actually

solve the problems outlined earlier.

The hyperscale public cloud vendors go one step further, by offering

these software distributions as an easy-to-consume service. These

services take care of initial cluster deployment, using their own design

best practices and implementation tooling.

While saving massively on initial deployment lead time, these solu-

tions have a number of downsides. Public cloud vendors’ service port-

folios are designed to lower the barriers for developers to start using

additional services, often without an upfront cost. It’s an elegant,

integrated portfolio of services that developers love.

4 7SaaS Managed Kubernetes: The Effective DIY Alternative

Lock-in Blues
It’s not without its drawbacks, though—the biggest one being vendor

lock-in. These hyperscale public cloud vendors have many services,

and they’ll try to persuade you to use their other services, as well. Lock-

in increases steadily, drawing you in as a customer with each step.

Lock-in
Software vendors—and now cloud provid-

ers—have devised many barriers over the

years to leaving their offerings. Some of

the dangers of lock-in are:

•	 The vendor going out of business, which
means stopping updates and bug fixes
or (in the case of cloud offerings) terminating all services. Customer
data can also be lost.

•	 More subtly, a change in the vendor’s plans and priorities may take the
product in a direction that doesn’t help some of its own clients. They
may find that the product no longer offers the original value they found
in it, but that their data and processes are trapped in it.

•	 Similarly, the vendor may decide to remove a feature that the client
relies on. Perhaps the feature isn’t important to the clients the vendor
wants to attract. Often, the vendor sees the feature as a hindrance to
selling some other services, and removes it to force clients to spend
more for a new service.

•	 Bugs of high priority to the client may be of low priority to the vendor,
so they may go unfixed.

•	 Vendors have been known to raise prices so much that they make the
offering unaffordable to many users. Sometimes they suddenly start
charging high prices, without warning, for offerings that were previ-
ously free of charge.

•	 Thus, professional administrators and operators are wary of lock-in.

4 8SaaS Managed Kubernetes: The Effective DIY Alternative

While, operationally, the level of integration between services and

products is naturally very high, the cost and the operational and stra-

tegic risk increase exponentially.

The public cloud provider may lock you into using their authentica-

tion, monitoring, or data services (like databases and object storage).

For instance, to use their managed Kubernetes services, you have no

alternative but to use their compute instances, block storage service,

and monitoring services, as well as their authentication service. This

lack of choice increases the lock-in.

In the Kubernetes realm, another lock-in is more obvious: the man-

aged Kubernetes service often dictates what compute instances can

be used, in the sense that you can only use their compute nodes. This

can prevent you from using a third-party service or bringing your

own compute.

And while technically there’s nothing wrong with using their com-

pute nodes as Kubernetes worker nodes, they do make up the vast

majority of cloud costs. And what happens if they alter their terms or

hike prices? If you’re locked in, you may feel you have to accept these

unwanted changes.

But maybe not. And that leads to an often-hidden, but frustrating and

expensive, issue—breaking the lock and finding another provider

can be incredibly frustrating. The time it takes to move away from a

specific public cloud service when locked into that ecosystem can take

many months, and may have a significant impact on your projects and

budgets. Sometimes providing your own infrastructure is cheaper and

offers more agility.

While lock-in is often associated with the risk of cost increases, the

strategic risk of not being able to move and adapt to changing circum-

stances in your business could also be crippling, especially when the

services are used for customer-facing digital transformation projects.

4 9SaaS Managed Kubernetes: The Effective DIY Alternative

This means a loss of agility in the marketplace, since you’re no longer

able to adjust requirements in response to changing circumstances.

That increases your Total Cost of Ownership, or TCO, when using the

public cloud vendor’s entire service landscape.

Mitigating Risk
Intelligent planning demands that organizations consider solutions

that don’t have economic and operational lock-in, while still offering

Kubernetes as a service. The value proposition is clear: the enterprise

receives all the benefits, without the downside.

With SaaS, you’re essentially hiring the best consultants to assist with

the architecture design, configuration, and operational processes to

optimize your Kubernetes environments for availability, resilience,

security, and cost. But you don’t pay the high price of a specialized

consultant. Instead, the SaaS provider creates the automated work-

flows and the back-end automation that allow hands-off initial de-

ployment, upgrades, monitoring, alerting and more. Since it’s all done

with software instead of labor-intensive manual processes, it scales

elegantly.

Smaller organizations simply can’t justify the cost of a dedicated

Operations team with the appropriate Kubernetes knowledge and

experience, which requires expensive staff—nor can they run the risk

of being dependent on a single worker or a small number of employees

for their specific knowledge.

Instead, cloud-agnostic, managed Kubernetes services, like Platform9

SaaS Managed Kubernetes service (PMK), are indifferent to the

location of your Kubernetes cluster: on-premises, in a private or

hosted cloud, across any of the public clouds, or in a combination of

all of these.

Workloads are moving increasingly to the network edge. This dy-

namic creates hundreds or even thousands of new locations. In that

scenario, operational overhead ramps up massively, leading to huge

5 0SaaS Managed Kubernetes: The Effective DIY Alternative

management nightmares. But SaaS provides central management of

those widely distributed clusters with the simplicity of a single pane

of glass console. That means formerly labor-intensive operations like

software updates are as easy as the click of a button.

PMK offers quick onboarding to Kubernetes for developers, allowing

them to use the service without any re-training, and includes many of

the moving parts that usually accompany Kubernetes for monitoring,

logging, networking, and storage.

Focus on Business Outcomes
Managed Kubernetes services are invaluable in other ways, too. Not

only do they remove the operational complexity of designing, imple-

menting, and operating Kubernetes, they allow organizations to focus

their staff’s time on things that directly impact their bottom line.

Instead of ITOps staff focusing on daily IT operations, they will have

time to spend on business projects, which increasingly have an IT or

tech component.

Thus, a managed Kubernetes platform has two key advantages. First,

your organization will have a proper Kubernetes infrastructure, which

is a driver for many digital transformation, digitization, and e-com-

merce projects. It allows organizations to quickly develop, release, and

iteratively improve customer-facing applications.

Second, freeing up IT staff from their day-to-day task will accelerate

those projects by adding invaluable tech skills and experience into the

mix, without having to risk being pulled back into yet another opera-

tional fire that needs their immediate and undivided attention.

Many companies underestimate this latter aspect of using a managed

Kubernetes service. Freeing up technical staff that know the organi-

zation’s technology stack and all of its subtleties, technical debt, and

quirks can have a massive impact on the quality of the software deliv-

ered as part of those innovative projects.

5 1SaaS Managed Kubernetes: The Effective DIY Alternative

Improving Time-to-Value
In addition, using a managed Kubernetes service allows organizations

to hit the ground running. Instead of slowing down a transforma-

tion project to hire the right staff, design, install, and configure a

Kubernetes environment, a managed Kubernetes service helps speed

up projects by decreasing lead time for the technical aspects of build-

ing a Kubernetes environment.

This newly unencumbered IT staff can be the difference between a

successful digital transformation and a failed one. IT staff have a

crucial role in non-functional aspects. While functional characteristics

define specific behavior and functionality, non-functional aspects

define qualitative aspects of a system, including stability, availability,

resilience, security, performance, manageability, upgradeability, cost,

and more. With IT staff safeguarding those attributes, these projects

will deliver a better end result, and more quickly.

Now that we’ve examined the value of a dedicated service to manage

your containers, we’ll look at what such a service offers. The first of

such a service is to monitor what’s going on so you know when there

are problems. Thus, monitoring and observability are the topics of the

next chapter.

In This Chapter:
•	 Types of observability and their value

•	 The different layers of application monitoring

•	 Making observability work for your business

We’re on our way to discovering a robust and vendor-neutral way to

manage Kubernetes instances. In this chapter we look at the founda-

tion of management: monitoring.

There are many tools in the cloud-native and microservices tool

chest. Kubernetes is the go-to for container management, giving or-

ganizations superpowers for running container applications at scale.

However, running an enterprise-grade, production-level Kubernetes

deployment is more than running just Kubernetes by itself.

Because containers are ephemeral and transient, monitoring, security,

and data protection are fundamentally different from their counter-

parts in virtualized or bare metal applications. Optimizing the tooling

that supports a Kubernetes deployment is not a trivial task. In many

cases, this means that tooling aimed at virtualized environments

doesn’t translate well into containerized platforms. Replacing these

tools may be better than retrofitting legacy tooling.

Tackling Observability
in Your Kubernetes
Environment

CHAPTER 6

52

5 3Tackling Observability in Your Kubernetes Environment

In fact, more modern tooling created to support container environ-

ments may help you get the most out of your container platform.

In this chapter, we’ll look at how to optimize observability in your

Kubernetes environment. We’ll define the types of observability, offer

a path for starting and expanding the process, and describe the advan-

tages of cloud-based or Software as a Service (SaaS) monitoring.

Types of Observability and Their Value
Let’s go back to basics first. Looking at the observability space for

container-based microservices landscapes, we can distinguish three

separate types of tooling:

1.	 Monitoring (or metrics): collecting operational telemetry about

applications, application services, middleware, databases, operat-

ing systems, and virtual or physical machines

2.	 Logging: collecting error messages, debug or stack traces, and

more detailed messages

3.	 Tracing: collecting user transactions and performance data across

a single or distributed system

KUBERNETES

Watch the Platform9 webinar1 on how Kubernetes
has transformed monitoring. Another great resource
to check out is the Platform9 blog,2 “Logging &
Monitoring of Kubernetes Applications: Requirements &
Recommended Toolset.”

1 https://platform9.com/resource/how-has-kubernetes-transformed-monitoring/

thank-you/

2 https://platform9.com/blog/logging-monitoring-of-kubernetes-applications-

requirements-recommended-toolset/

https://platform9.com/resource/how-has-kubernetes-transformed-monitoring/thank-you/
https://platform9.com/resource/how-has-kubernetes-transformed-monitoring/thank-you/
https://platform9.com/blog/logging-monitoring-of-kubernetes-applications-requirements-recommended-toolset/
https://platform9.com/blog/logging-monitoring-of-kubernetes-applications-requirements-recommended-toolset/

5 4Tackling Observability in Your Kubernetes Environment

In a DevOps or SRE world, these three disciplines collectively make up

observability.

Each discipline provides valuable insights in all layers of the layer cake

that make up the increasingly complex application and infrastructure

landscape of containers. DevOps engineers and SREs use the insights

from these tools to improve resilience and performance, as well as

triage errors, fix bugs, and improve availability and reliability.

Finally, they use these tools to gauge how users are interacting with

the system. The tools help figure out which functionality visitors use

or don’t use, and where performance bottlenecks lie.

As application landscapes expand due to digital transformation, the

number of microservices and individual containers explodes, making

it harder to see the inner workings of systems. So, it shouldn’t be a

surprise that executing a good observability strategy is one of the

deciding factors of a successful Kubernetes deployment.

While enterprise IT is more important than ever, digital transfor-

mation has led many more organizations to create digital and online

applications. IT has often become a critical business function, vital for

the survival of your business.

Layers of Monitoring
A good place to start with monitoring is by collecting metrics and

operational telemetry of the Kubernetes constructs like clusters and

pods, as well as collecting metrics on resource usage like CPU, memo-

ry, networking, and storage. Starting with the bottom two layers (see

Figure 6) for monitoring is relatively easy and a good way of becoming

comfortable with observability tooling.

Infrastructure monitoring and logging are key capabilities because

it’s important to know the activities of your physical infrastructure. A

substantial amount of your application’s performance and resilience

comes from correctly functioning servers and networking.

5 5Tackling Observability in Your Kubernetes Environment

As the application landscape expands, a well-executed infrastructure

monitoring and logging strategy also builds a shared understanding of

application performance across teams, preventing miscommunication

between application development, cloud platform, and other teams.

Visibility into infrastructure and the shared understanding it builds

is crucial, but of course doesn’t give the entire picture. For that, you

need to move up the stack, and start with application performance

monitoring (APM). For many organizations, the application monitor-

ing journey starts with monitoring (or metrics collection) and logging

containerized workloads. For Kubernetes-based environments, there

are natural combinations to start with, like the open source Fluentd

and Prometheus, which make it easier to run monitoring and logging.

Figure 6: An application layer cake with monitoring examples

ApplicationBusiness Domain

Core 4 Resources: CPU, Memory,
Disk, Network

Kubernetes Pods, & Services

Per-Container Resource Usage

No. of Transactions & Errors

Revenue, Basket Value
Application Domain

ContainersKubernetes Pods, Services, etc.

Physical & Operating System

5 6Tackling Observability in Your Kubernetes Environment

Making Observability Work for Your
Business
To gain benefits from observability, you need to think about your

business requirements over the next few years and choose a platform

that meets your needs. This section describes how to think about re-

quirements, tools, and the IT organization.

Align Monitoring to Business Objectives
This chapter has presented a natural progression of how teams use

observability, starting with the infrastructure basics, working their

way up the stack into the realm of applications, and even tracing us-

ers across the application landscape, monitoring their behavior and

transactions.

This journey up the stack is an opportunity to align monitoring, log-

ging, and tracing to business objectives, mining more insights from

the increased visibility. It allows teams to gain visibility into more than

just technical metrics, generating business-oriented metrics, too.

By measuring business-oriented metrics (such as the dollar value of

the shopping basket, the number of abandoned baskets, and metrics

on popular or even disused features), product owners can align de-

velopment priorities to what their users really want, optimize per-

formance in areas where it actually matters, and fix technical debt to

accommodate further growth. Naturally, these insights fuel business

growth and revenue.

When tooling is aligned to the business and customer experience, the

tools can be used by more than just IT teams, allowing business teams

to gain insights into their applications and its users.

5 7Tackling Observability in Your Kubernetes Environment

Think Mid-Term to Long-Term
The tools you choose for observability should serve your needs for

several years. This requires you to think about how your business is

changing and how that will change your observability requirements in

the long-term.

The cost of migrating to a new, more capable APM platform can be

significant, but won’t immediately give you additional functionality.

This additional functionality requires additional engineering and im-

plementation before these capabilities are fully unlocked.

And let’s not forget that moving to another APM platform requires you

to retrain staff and needs time to regain confidence in the metrics and

insights, all of which reduce the value the APM platform brings in the

short term. So, it makes sense to choose your tooling wisely from the

start, keeping the long-term goals in mind.

In other words, while you won’t need the most complex or fea-

ture-rich solution now, look at what features you’ll need to support

evolving requirements in the future. Invest in your team and people

and start with the APM capabilities you need now. You don’t need to

enable, implement, and incorporate every feature the tooling provides

from the get-go. It’s OK to start simple, build up confidence along the

way, continuously evolve your knowledge of the tool, and expand its

use in-sync with changing requirements.

Cloud-Based Observability (SaaS)
If your teams are busy setting up and managing servers, they’ll be

less effective at their real job: improving the usage of APM across the

organization. By adopting a SaaS offering, the observability platform

team can focus on the functional side of observability instead of the

day-to-day toil of managing and operating the platform.

5 8Tackling Observability in Your Kubernetes Environment

That means they’re not bogged down with installing yet another secu-

rity patch or forced to think about scaling the observability platform.

Instead, they have more time to help application development teams

with their observability challenges or to improve the platform itself.

SaaS also helps an organization get started with an observability plat-

form. Instead of having to make the hard design choices at the start of

The Observability Platform
Team
As your organization grows and your use of

metrics becomes commonplace, it makes

sense to create a dedicated team focused

on the continual improvement of the ob-

servability platform, and help application

development teams gather the metrics that matter to them.

The dedicated team owns the platform and executes an observability

strategy across many applications and teams. The observability platform

team’s expertise speeds up troubleshooting, helps with application ar-

chitecture optimization and can help teams to quickly pinpoint and solve

bottlenecks and fragile areas prone to failure.

With their expertise and knowledge of the environment, they can “travel”

from application team to application team to grow each team’s knowledge

and expertise more efficiently, preventing re-inventing the wheel and

other local optimizations within each team, instead letting all teams learn

from the collective knowledge, driving up maturity more quickly.

With this team structure, the application teams can focus on gathering

metrics, refining the metrics they collect, and improving the signal-to-

noise ratio inherent in gathering metrics, so the telemetry gathered is

optimally serving business objectives and the team isn’t spending any

time on managing or operating the observability platform.

5 9Tackling Observability in Your Kubernetes Environment

a project (with little to no experience), you can use the choices offered

by the SaaS vendor, confident that its experts have vetted the choices.

Using a SaaS service lets the vendor take on the operational burden of

upgrades, scalability, and performance for the APM software, freeing

up your team to work on broader and deeper implementation of APM

across application teams.

This will speed up the pace at which your observability platform ma-

tures, allowing teams to gain a deeper and more user-oriented under-

standing of the application landscape more quickly. This increases the

value of the investments made in the observability space in two ways:

You spend less time installing, configuring, and getting started with

the tooling, and the insights gained from the tooling can be applied

more quickly to optimizing revenue and fueling growth.

In effect, you can leapfrog your APM journey, skipping the traditional-

ly hard first steps in getting started with monitoring.

This chapter laid out the essential role of monitoring in the man-

agement of Kubernetes clusters. In the next chapter, we turn to the

networks on which you run your Kubernetes containers.

In This Chapter:
•	 Reducing service mesh complexity

•	 The service mesh catch-22

•	 The three leading, mature service mesh options available in the
Kubernetes ecosystem: Consul Connect, Istio, and Linkerd

As applications are being broken down from monoliths into microser-

vices, the number of services making up an application increases ex-

ponentially. And as anyone in IT knows, managing a very large number

of entities is no trivial task.

Service meshes solve challenges caused by container and service

sprawl in a microservices architecture by standardizing and automat-

ing communication between services. A service mesh standardizes and

automates security (authentication, authorization, and end-to-end

encryption), service discovery and traffic routing, load balancing,

service failure recovery, and observability.4 Just as virtualization

abstracted the hardware layer of computer systems and containers

abstracted the operating system, a service mesh abstracts away com-

munication within the network.

4 https://platform9.com/resource/tackling-observability-in-your-kubernetes-environment/

Best Practices for Selecting
and Implementing Your
Service Mesh

CHAPTER 7

60

https://platform9.com/resource/tackling-observability-in-your-kubernetes-environment/

6 1Best Practices for Selecting and Implementing Your Service Mesh

Why a Service Mesh?
As monoliths are pulled apart into their

smallest constituents, the resulting mi-

croservices are usually distributed across

multiple systems and communicate over

HTTPS, so they become heavily dependent

on network communications.

A service mesh manages the network communications by setting up

standards and automating their implementation. It frees developers from

defining and implementing the communications for every service, over

and over again (see Figure A).

This is much more scalable, more automated, and less error-prone. The

service mesh also improves security and reliability by standardizing the

interface between services. The service mesh acts like an automatic walled

garden for each service on the network.

This is done by making sure other services know the service exists (called

“service discovery”), managing authorization and authentication be-

tween services, taking care of load balancing, and adding security policies

for communication to and from the service by the outside world.

Figure A: Service mesh architecture

Microservice A

Microservices

Business CCC*

Microservice B

Business

Business

CCC*

CCC*

Microservice A

Microservices + Service Mesh

Business

Proxy
Config

Microservice B

Business

CCC*

Proxy

Data Plane

CCC*

*CCC = Cross Cutting Concerns

= Business Logic, Business Metrics

= Traffic Metrics, Routing, Retry, Timeout, Circuit Breaking,
 Encryption, Decryption, Authorization, ...

Metrics

Control
Plane

6 2Best Practices for Selecting and Implementing Your Service Mesh

Reducing Service Mesh Complexity
Although a service mesh is very useful to development teams, imple-

menting the service mesh itself still takes some work. Because there

are many moving parts, a service mesh leaves a lot of flexibility and

room to customize it to your specific needs. As always, flexibility

comes at the cost of complexity.

Because a service mesh has control over the network communication

between all services in the mesh, it unlocks some advanced deployment

and release strategies, such as canary releases, blue/green releases, and

rolling upgrades.

This improves the reliability of the services in production. In some cases,

the service mesh can react to changes in the traffic patterns, adding circuit

breakers and rate limiters between services to prevent cascading failures.

In order for teams to gauge the performance and quality of each release, a

service mesh often has observability tooling (for collecting telemetry and

metrics, as well as building in distributed tracing capabilities).

In short, a service mesh acts like an operational mission control to deter-

mine the behavior of microservices at scale, making sure the landscape

of microservices is communicating securely, and monitoring performance

and service quality. It removes much of the manual work from the de-

veloper’s plate, so they need to focus only on the business logic, not the

network, security, and communication plumbing.

The result is not only higher quality in business logic code, but also a re-

duction in variations and human errors in the plumbing, by standardizing

and automating much of that work.

6 3Best Practices for Selecting and Implementing Your Service Mesh

Balancing the features, functionality, and value of a service mesh with

its inherent complexity it is highly challenging, and requires exper-

tise, but is well worth the effort. With an experienced team in place,

organizations can overcome the complexity associated with running a

service mesh at scale.

The best way to start developing the necessary skills and experience is

no different from any other technology: start early, and start simple.

You don’t need to accelerate from 0 to 60 miles per hour instantly.

Instead, start small, and incrementally add more features and func-

tionality as you build trust in the service mesh.

It’s recommended to start developing service mesh skills in tandem

with your microservices architecture, because adding service mesh

features to a relatively simple microservices architecture is much

easier than when it’s already complex and large. Let the service

mesh grow organically alongside your ever-evolving microservices

architecture. This keeps services secure and compliant, and helps

maintain visibility.

The Service Mesh Team
As your organization grows and your use of the service mesh increas-

es, it makes sense to create a dedicated team focused on the contin-

ual improvement of the service mesh, as well as helping application

development teams make the most of the features and functionality

it offers.

The dedicated team owns the service mesh platform and is responsible

for the adoption of the service mesh across application teams and

the entire microservices landscape. With this team structure, appli-

cation development teams can focus on building business logic and

microservices.

As you’ll see in the following sections, having a dedicated team keep

tabs on service mesh use cases (like multi-cloud and heterogenous

6 4Best Practices for Selecting and Implementing Your Service Mesh

workloads) may save you from an expensive, intrusive, and complex

migration project because reality got in the way.

The Service Mesh Catch-22
Choosing the right service mesh technology, and nailing the imple-

mentation details, are crucial factors in your service mesh success.

But how do you make the right decisions and do the right things when

you don’t have the right knowledge and experience yet? This is the

catch-22 for the initial deployment and configuration of every new

technology, including a service mesh.

This is a common pitfall for organizations, as engineers start design-

ing and implementing a new technology enthusiastically. The inef-

ficiencies and sub-optimal decisions due to lack of experience don’t

immediately come to light, but often surface only weeks, months, or

even years later, when it’s too late to drastically change anything.

How do you prevent these mistakes? And how do you kickstart the

learning process without the associated risk and possibly massive

impact down the road? Turning to a simpler, less feature-rich alterna-

tive carries its own risk, as you introduce a future point in time where

your own maturity outpaces the limited feature set, forcing you to do

a forklift upgrade of the mesh, introducing a migration not only of the

mesh itself, but a migration of all the microservices in the mesh, too.

Instead, choosing the right mesh technology with the end-goal in

sight makes more sense. Currently, there are three leading, mature

options available in the Kubernetes ecosystem: Consul Connect, Istio,

and Linkerd.

While there are differences, all three are battle-tested, produc-

tion-ready, and enterprise-grade solutions. It’s a matter of finding

the right one given your unique context, requirements, and goals.

Istio has the most functionality and flexibility, but is also the most

complex, making the first steps harder. Linkerd is Kubernetes-only,

6 5Best Practices for Selecting and Implementing Your Service Mesh

making it easier to implement and use. If you need to support virtual

machines (VMs) alongside Kubernetes, Consul is a good choice.

The paradox here is knowing which level of flexibility you need a few

years down the line when you have zero experience and expertise to

make that decision now. Let’s dive into an overview of these three op-

tions to start building a picture of which one is right for your organi-

zation. This will help you make the right decision and prevent obvious

pitfalls as you build trust and increase your service mesh proficiency.

HashiCorp Consul Connect
Connect is Consul’s service mesh feature. It provides service-to-ser-

vice networking and security (authorization, encryption). As seen in

Figure 7, applications can use a sidecar proxy deployment model.

These sidecars handle the inbound and outbound TLS connections,

with the application completely agnostic of Consul. Consul also has a

native integration deployment model. In Kubernetes environments,

Consul uses a per-host DaemonSet agent and Envoy sidecar prox-

ies per application that handles application traffic. Consul applies

a zero-trust security model, is platform agnostic, and supports

multi-cluster deployments.

As with other HashiCorp tools, Consul Connect is easy to get started

with. Its deployment and initial configuration are a little less daunting

than other options, making it a good solution for those very new to the

service mesh space.

Figure 7: Consul Connect in a sidecar proxy model

Service A Sidecar
Proxy

Service BSidecar
Proxy

6 6Best Practices for Selecting and Implementing Your Service Mesh

Istio
Istio is the darling of the cloud-native space. Like many projects before

it, it was open sourced by an end-user company (Lyft, in Istio’s case),

as they built a solution to handle complexity and scale.

Istio has seen massive adoption, especially as the basis of various

public cloud offerings.

Istio’s complexity is its downside for newcomers to the field, but also

what makes it so powerful; one example is the addition of telem-

etry and analytics. As Figure 8 shows, its architecture is much like

Consul Connect.

A notable fact about Istio is that it is not part of the Cloud Native

Computing Foundation

(CNCF) landscape map, even though it’s the most popular service

mesh option for the CNCF’s Kubernetes ecosystem.

Figure 8: The Istio architecture

Istio Mesh

Service A

Ingress
traffic

Data plane

Control plane

Proxy

Pilotistiod Citadel Galley

Service B

Proxy
Egress
traffic

Mesh
traffic

Discovery Configuration
Certificates

6 7Best Practices for Selecting and Implementing Your Service Mesh

Linkerd
Linkerd is the CNCF answer to a service mesh (see Figure 9). Its v2

architecture mimics Istio, but favors simplicity over features and

flexibility.

Where Consul and Istio work with Kubernetes and VMs, Linkerd ex-

clusively works on Kubernetes. This means its architecture has fewer

moving parts and fits into the Kubernetes architecture more seam-

lessly, with deeper integration into many other CNCF projects like

Prometheus.

To get the full details, the Platform9 blog5 has a post called “Kubernetes

Service Mesh: A Comparison of Istio, Linkerd and Consul.” It compares

these three feature-by-feature.

5 https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/

Figure 9: The Linkerd architecture

controller

prometheus

grafana

tap proxy-injector

sp-validator

linked-proxy

application

destination

identity

public-api

Control Plane

Data Plane

CLI

web

https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/

6 8Best Practices for Selecting and Implementing Your Service Mesh

A Service Mesh Choice Is Not Forever
Even though you should now have the knowledge to make an initial

choice, remember that requirements and circumstances change, so

your service mesh will need to evolve, catering to those changes.

In some cases, a different technology is needed. If you’re using the

sidecar deployment model, applications and microservices running as

part of the mesh are not aware of the mesh, nor do they have any spe-

cial customization or integration with any specific mesh. The sidecar

model makes it easier to migrate between technologies.

For more deeply integrated service mesh approaches, the Service

Mesh Interface,6 or SMI for short, may prove useful. SMI offers a set of

common, portable APIs that provide developers with interoperability

across different service mesh technologies including Istio, Linkerd,

and Consul Connect.

Conquering Multi-Cloud
Reality is messy, and IT is no different. Migration from old technol-

ogies to new ones is always happening, whether from VMs to con-

tainers, from on-premises to public cloud, or from one public cloud

to another. What use is a service mesh that helps you control traffic,

security, permissions, and observability when it works for only a sub-

set of workloads in just one environment?

Multi-cloud in a service mesh context means more than just multiple

public clouds. It also needs to support on-premises deployments and

support VMs. Last, the service mesh should span all these environ-

ments and have multi-cluster support.

This multi-cloud reality is often not explicitly designed by the organi-

zation, but “just happens.” For instance, a group of developers starts

using yet another public cloud, because it has the specific functionality

6 https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/

https://www.schneier.com/
https://www.schneier.com/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/

6 9Best Practices for Selecting and Implementing Your Service Mesh

they need to do their work. Whatever the cause, making sure your

service mesh can handle this guarantees you can take a proactive

approach to supporting the endless variety of multi-cloud scenarios

in production. It gives you the piece of mind that you’re in control of

security in the untrusted world of public cloud, and have visibility into

the entire microservices landscape.

In other words, if chosen correctly, a service mesh can serve as an

abstraction layer on top of the public cloud, abstracting away the

cloud and giving back control over traffic, security, permissions, and

observability in a multi-cloud reality.

Looking at the three options shows that while Linkerd’s simplicity

sounds great on paper, reality may get in the way, requiring you to

use a service mesh technology that works across containers and VMs.

And again, SMI may help you migrate service mesh technologies if you

need to—accepting and acknowledging that reality is messy may save

you from a painful service mesh migration project.

With the tools we’ve described in the Chapters 5 and 6 of this guide,

you can set up a robust architecture for your applications. But where

should you actually run those systems? In the final chapter we’ll look

at a promising new environment for highly responsive containerized

applications.

In This Chapter:
•	 Bandwidth and compute power in a distributed architecture

•	 Why central management is still necessary

•	 Applying the distributed Kubernetes architecture to Retail,
Manufacturing, and SaaS

This guide has laid out a strategy that can run in any modern environ-

ment, including multiple third-party clouds. This chapter presents a

high-performance environment that has evolved recently, part of a

movement known as edge computing.

Distributed Edge with
Managed Kubernetes

CHAPTER 8

EDGE COMPUTING

As Internet speeds grew and SaaS services became
popular, applications moved a lot of their intelligence into
the cloud. The popularity of mobile devices with limited
storage and compute power accelerates this trend toward
centralizing most processing in a remote hub. But for
performance reasons, application developers are trying
to do more processing with local data in the device itself,
or in a cell or local system located near the device. This is
called edge computing.

70

7 1Distributed Edge with Managed Kubernetes

Each generation of networking presents unique challenges that are

met by unique solutions. Current application architectures connect

small computers at the edge—mobile apps, IoT devices, retail point-

of-sale systems, and so forth—with hubs in the cloud. These environ-

ments are characterized by:

•	 Compute-intensive requests sent by mobile devices into the cloud,

where a vendor is expected to handle the requests and return re-

sults quickly

•	 Cellular networks to handle most requests

•	 Modular, scalable worker nodes that handle requests and are

controlled by Kubernetes, the most popular tool currently for

distributing requests across worker nodes

This network architecture calls on companies hosting applications to

place worker sites on network endpoints, so they can quickly accept

requests from mobile device users, calculate the answers to the re-

quests, and return them to the mobile devices.

RUNNING COMPUTATIONS IN CELL
TOWERS

Don’t cell towers contain just radios and antennae?
Nowadays, towers are building in compute power for their
clients, including GPUs.1 They offer this compute power so
that applications can run close to the clients instead of in
far-away data centers, saving time and network costs.

1 https://ubuntu.com/blog/edge-ai-in-a-5g-world-part-1-how-smart-cell-towers-will-

change-our-lives

https://ubuntu.com/blog/edge-ai-in-a-5g-world-part-1-how-smart-cell-towers-will-change-our-lives
https://ubuntu.com/blog/edge-ai-in-a-5g-world-part-1-how-smart-cell-towers-will-change-our-lives
kamesh
We have a good webinar that talks about this: I would use that reference instead: https://platform9.com/resource/networking-and-kubernetes-in-the-world-of-5g-edge/

7 2Distributed Edge with Managed Kubernetes

A New Architecture for Responding to
Compute-Intensive Applications
During the past 10 to 15 years, companies have gotten used to accepting

data from mobile users or edge devices into a centralized data center.

This data center run by the company owning the app determines the

proper response and returns it to the edge.

But this simple model has turned out to be inadequate for delivering

the performance needed as the complexity of calculations grows.

Cellular networks, especially those employing some form of 5G, have

alleviated bandwidth limitations between the cellular tower and the

edge, whether the edge is an end user on a mobile device or an IoT

device reporting conditions in the field. But a significant bottleneck

remains between the cell tower and the company’s systems.

A new architecture has therefore developed, based on distributing the

work to intelligent systems at the collection points provided by en-

terprises. Much of the information and work is never seen by the sites

run by app developers. Instead, enterprise companies launch local

containers to handle requests. Kubernetes instances are also launched

at the endpoints to start up and monitor worker processes.

This chapter describes the new architecture and how to take advantage

of it to offer applications that respond gracefully to user requests or

reports from devices in the field.

Bandwidth and Compute Power in a
Distributed Architecture
Edge computing brings compute power closer to the end users and

their devices, essentially decentralizing some of the compute capabil-

ities of centralized public cloud offerings.

7 3Distributed Edge with Managed Kubernetes

Recent developments in connectivity, such as the increased bandwidth

of 5G networks, have increased the opportunities for communication

between edge locations and end users. This increase in connectivity

allows an enormous growth of data and unlocks many new use cases,

from image and video processing and voice recognition to running

factories and retail locations over 5G instead of Wi-Fi. Fast response

time is critical in the new applications. Mobile users are impatient, and

IoT devices must make real-time decisions.

While the connection between the end user and the edge location

enjoys ample bandwidth, responses from the centralized cloud or data

center can’t keep up in speed. Edge locations in many cases are remote

and have limited connectivity, but require complex processing for

huge amounts of locally generated data. That in turn creates an archi-

tectural challenge to bring compute resources where they can exploit

the increases in bandwidth at the edge.

A Distributed Architecture Tailored to
Kubernetes for the Edge
Transporting data from the edge to the central cloud or core data

center for processing doesn’t make sense, especially if there’s a large

amount of data to be transferred and fast response times are required.

Processing at the edge is more cost-effective. In this architecture an

edge location, such as a 5G radio tower, runs one or more clusters of

worker nodes. The edge location sends only processed data that’s use-

ful for business-related analytics to the central repository.

This new architecture processes data close to where it’s generated,

with a few core data centers or cloud regions acting as the brains of the

operation.

In this scenario, the edge locations themselves need sophisticated task

management for thousands of simultaneous processes that are set up

and torn down quickly. Kubernetes is the current industry standard for

this kind of process management. That means starting up Kubernetes

7 4Distributed Edge with Managed Kubernetes

worker nodes at the edge locations to run the data processing appli-

cations locally. By running only the absolutely necessary workloads

at the edge, companies can reduce costs associated with maintaining

centralized data centers and transferring data from the edge.

Application providers are now dealing with hundreds to thousands of

edge locations, or even more. With an architecture that requires less

hardware at the edge, savings scale linearly with the number of edge

locations.

Of course, this concept applies to more than just data-processing

applications. 5G, as well as faster and more cost-effective endpoints

(consumer and industrial IoT devices alike), are creating new use cases

that generate far more data than ever before, such as video feeds from

CCTV systems, telemetry information from industrial IoT devices, and

interactions generated by apps and games on consumer phones.

Central Management Is Still Needed
Although the modern, distributed applications described in this

chapter process data at the edge, application providers still need

central control and visibility into the processing. Platform9 Managed

Kubernetes (PMK) delivers Software-as-a-Service (SaaS) Kubernetes

cluster management and simplicity of operations like native public

cloud services but using upstream open source stacks that are de-

ployed and operated on a wide range of on-premises (VMware, bare

metal), public cloud(s) (AWS and Azure), and edge infrastructures.

The federated, distributed architecture of PMK provides a consistent

experience across regions, while being centrally managed and resilient

against connectivity and bandwidth issues. The architecture supports

multiple regions in a hub-and-spoke model. Figure 10 shows an

overview of the federated architecture supported by PMK. Multiple

regions work independently. Each management plane region acts as

the central hub and brains of a region. The management plane defines

7 5Distributed Edge with Managed Kubernetes

policies for all the edge processors, with the federation of configura-

tion templates and apps.

The management plane is where DevOps engineers manage the entire

operation. There, they store container images and inventory caches

of remote locations. Synchronization ensures eventual consistency to

regional and edge locations automatically, regardless of the number of

locations.

Profile-Based Management
Platform9 facilitates the scaling of edge computing to thousands of

edge data centers by grouping them so that similar data centers can

be managed centrally through a single policy known as a profile. This

relieves IT staff from managing each data center individually. Instead,

the staff just defines a small number of profiles and indicates excep-

tions to policies where needed for a particular data center. Each edge

location, such as radio towers, warehouses, and retail locations, runs

its own worker nodes and containers.

Figure 10: Distributed Edge Platform overview

Qbert Local reg.

Remote clusters

Remote clusters

PMK management plane -
Region 1

PMK management plane -
Region 2

Central Registry & App catalog

Inventory Svc

Profile based cluster deployment

Federated
regions

Registry, Inv.
Sync

Platform9 Mgmt
traffic

Core Data Centers/Cloud

7 6Distributed Edge with Managed Kubernetes

Profile-based cluster management makes it easier to deploy identical

remote clusters and configurations, from a single profile, instead

of managing each remote cluster separately. That minimizes con-

figuration drift, while still being able to apply unique configurations

where needed.

This feature helps standardize application and container deployment

across clusters, making the onboarding of new edge regions easy

and consistent. This allows the day-to-day operations work to scale

non-linearly, making the most of each engineer’s time. The feature

allows administrators to manage a large number of edge locations

without additional work.

As you saw in Figure 10, the “core” registries and catalogues are

synced with remote locations, which cache this information to reduce

bandwidth and remove any connectivity dependencies they might

have to the core data centers.

As a result, deploying and scaling applications at the edge isn’t de-

pendent on the core data centers, but can be handled locally while

still receiving periodic policy-based changes to keep configurations

consistent and in sync with the centrally defined policies.

Figure 11: Distributed Edge Platform deep dive

PMK management plane -
Region 2

Federated
regions

IoT/edge
devices

Devices Edge Locations Local/Regional
Data Centers

Core Data Centers/Cloud

worker(s) at
edge location

K8s Clusters at Remote locations KubeVirt

K8s masters

Site-registry and
apps cache Central Registry &

App catalog
Profile based

cluster deployment

Inventory Svc Qbert

worker(s) at
edge location

worker(s) at
edge location

Calico nw policies &
encryption

Server mesh for
inter-cluster comms

~2 km

pods Pods & VMs

Registry, Inv.
Sync

Platform9 Mgmt
traffic

Pods & VMs

K8s clusters (core)

PMK management plane -
Region 1

Inventory svc stores a cache
of the objects: pods, svc etc.
for better visibility

Registry for apps,
cluster components
can be optionally
synced with other
registries for availibility

Profile based system
makes it easier to create
similar looking ‘remote’
clusters along with apps
deployed on them

7 7Distributed Edge with Managed Kubernetes

The architecture deep dive in Figure 11 shows the entire architecture,

from endpoints to core data centers. We’ll dive into each area of this

diagram in the next sections.

Core Data Centers Are the Brains of the Operation
The core data centers run the management plane, central container

registry, and App Catalog, as well as inventory services and poli-

cy-based deployment and configuration tools for cluster management.

The profile-based system makes it easier to create identical remote

clusters and to deploy applications to remote clusters consistently,

keeping configuration drift to a minimum and ensuring maximum

application compatibility.

Core data centers are federated across regions for consistent deploy-

ment in large scenarios. A single management plane region is able to

handle up to 100 Kubernetes clusters with up to 100 nodes per cluster.

The central inventory service caches a representation of the remote

sites for better visibility.

Consistent Networking and Granular Security
Networking and security policies are deployed consistently from

core to edge, making sure application deployments are secure and

compliant. Compliance can be enforced even in untrusted physical

environments through service mesh and micro-segmentation tech-

nologies. A distributed Kubernetes architecture combines all of these

locations—public cloud VPCs, core data centers, edge data centers,

and edge locations—in a single, interconnected mesh.

Local Data Centers Ensure Independent
Operation
Each local data center can deploy and scale applications independently

of the core data centers, creating geographically separated “cells” that

can run without a continuous connection to the core data centers. Each

7 8Distributed Edge with Managed Kubernetes

local or regional location runs one or more Kubernetes master cluster

nodes, which manage worker nodes across that location. This way,

each edge location runs only the absolute necessary hardware—often

low-cost, low-power, and low-maintenance machines—while re-

gional hubs coordinate application deployment and resilience across

their local region.

Applying This Architecture to Retail,
Manufacturing, and SaaS
A large number of use cases can benefit from the distributed

Kubernetes architecture described in this chapter. Many enterprises

see the same growing need for edge computing as their revenue

streams become more and more digitally focused. The enterprises

see more need for connecting cloud services to where their users are,

regardless of whether those users are consumers, other businesses, or

IoT-enabled devices.

Retailers are innovating and transforming the shopping experience to

be seamless across online and in-store visits. This requires connecting

cloud and on-premises locations to work together, offering buyers

a consistent experience. The new architecture unlocks new revenue

streams and increases existing value streams by accelerating the

rollout of digital store concepts and by increasing in-store automation

and the use of innovative retail software.

The distributed Kubernetes architecture helps retailers deploy new

stores quickly and consistently. It reduces per-store operational IT

costs both for onboarding new stores and for continuous operation,

including lifecycle management and seamless software upgrades of

running containers.

Manufacturers are replacing Wi-Fi and legacy wired networks

with 5G wireless connectivity for factory floors and manufacturing

plants to connect IoT and edge devices. That means they need to

connect 5G endpoints with worker nodes for data processing, central

7 9Distributed Edge with Managed Kubernetes

management, and factory process engineering. Putting the compute

power at the endpoints minimizes costs and operational burden.

Similarly, SaaS and independent software vendors (ISVs) are starting

to use edge computing to improve their users’ experience, decrease

time to market, and reduce costs and operational burdens. The

Platform9 Managed Kubernetes distributed architecture helps them

deploy their software to edge locations, decreasing latency and band-

width requirements, while consistently deploying the application to

many locations simultaneously.

Especially with many single-tenant application deployments across

edge locations (such as customer sites), upgrades and other operation-

al and lifecycle tasks are automated and consistently executed across

the board. This reduces support costs and effort, and allows developers

to spend more time on delivering new features and software.

Solve Your Kubernetes-at-the-Edge
Challenges
In this Gorilla Guide, you’ve seen how Platform9 Managed Kubernetes

is suitable for any kind of application at the edge across telco, retail,

manufacturing, enterprise, ISV, and SaaS use cases. Its ability to man-

age deployments on any infrastructure based on centralized policies is

a huge time saver. It lowers time-to-fix when outages occur, lowers

support costs, and improves customer satisfaction.

Make sure to look at Platform9 Managed Kubernetes and its distribut-

ed architecture to solve your Kubernetes-at-the-edge challenges. Try

it for free7 or download the updated buyer’s guide.8

Thanks for reading, and stay safe out there!

7 https://platform9.com/managed-kubernetes/

8 https://platform9.com/resource/buyers-guide-to-enterprise-kubernetes-solutions-a-comparison-

of-openshift-vs-vwware-tanzu-vs-google-anthos-vs-rancher-vs-platform9-managed-kubernetes/

https://platform9.com/managed-kubernetes/
https://platform9.com/resource/buyers-guide-to-enterprise-kubernetes-solutions-a-comparison-of-opens
https://platform9.com/resource/buyers-guide-to-enterprise-kubernetes-solutions-a-comparison-of-opens

ABOUT PLATFORM9

Platform91 enables freedom in cloud computing for enterprises that

need the ability to run private, edge, or hybrid clouds. Our SaaS-

managed cloud platform makes it easy to operate and scale clouds

based on open source standards such as Kubernetes and OpenStack,

while supporting any infrastructure running on-premises or

at the edge.

1 https://platform9.com/

80

https://platform9.com/
kamesh
Platform9 is the leading Managed Kubernetes provider for private, edge, and hybrid clouds. With a mission to enable freedom in cloud computing, the company delivers cloud-native technologies with SaaS simplicity that are easy to operate and scale, while supporting broad cloud capabilities that run on any infrastructure. The company’s SaaS management model has been proven to eliminate management complexity and costs through automated cluster upgrades, security patches, and fully-managed monitoring and troubleshooting across multiple points of presence, edge sites, and data centers with guaranteed SLAs. Headquartered in Mountain View, CA, Platform9 clients include enterprises such as Kingfisher Retail, Redfin, Cloudera, Yext, and Juniper Networks. For additional information please visit Platform9.com, refer to the Platform9 blog and download the recent Forrester Wave™: MultiCloud Container Development Platforms, Q3 2020 Report. Follow Platform9 on LinkedIn, Twitter, and Facebook.
�

kamesh
Replace with the latest boilerplate below. I will send an email since this is missing the links

ABOUT ACTUALTECH MEDIA

ActualTech Media is a B2B tech marketing company that connects en-

terprise IT vendors with IT buyers through innovative lead generation

programs and compelling custom content services.

ActualTech Media’s team speaks to the enterprise IT audience because

we’ve been the enterprise IT audience.

Our leadership team is stacked with former CIOs, IT managers, archi-

tects, subject matter experts and marketing professionals that help

our clients spend less time explaining what their technology does and

more time creating strategies that drive results.

If you’re an IT marketer and you’d like your own custom
Gorilla Guide® title for your company, please visit
https://www.gorilla.guide/custom-solutions/

81

	The Conductor of Online Transformation
	Considerations for Distributed Kubernetes—from the Data Center to the Edge
	Variety of Deployment Models
	Network Issues and Multiple Kubernetes Sites
	Local Data Processing
	Security Considerations
	Centralized Management of Multiple Environments
	Focus on Your Core Business Objectives

	Creating an Optimal DevOps Experience with Distributed Kubernetes
	Platform Engineering Optimal Experience
	The Application Owner’s Optimal Experience

	10 Considerations for Running Kubernetes
at Scale
	Scalability
	Availability
	Upgradability
	Observability
	Performance
	Reliability
	Supportability
	Security
	Compliance
	Deployability

	Production-Grade Kubernetes: Best Practices Checklist
	Deployment Best Practices
	Operations Best Practices
	They’re ‘Best’ Practices for a Reason
	Work Your Kubernetes Plan

	SaaS Managed Kubernetes: The Effective DIY Alternative
	Outsourcing Makes Sense—on the Surface
	Focus on Business Outcomes

	Tackling Observability in Your Kubernetes Environment
	Types of Observability and Their Value
	Layers of Monitoring
	Making Observability Work for Your Business

	Best Practices for Selecting and Implementing Your Service Mesh
	Reducing Service Mesh Complexity
	The Service Mesh Team
	The Service Mesh Catch-22
	A Service Mesh Choice Is Not Forever
	Conquering Multi-Cloud

	Distributed Edge with Managed Kubernetes
	A New Architecture for Responding to Compute-Intensive Applications
	Bandwidth and Compute Power in a Distributed Architecture
	Central Management Is Still Needed
	Applying This Architecture to Retail, Manufacturing, and SaaS
	Solve Your Kubernetes-at-the-Edge Challenges

