
1PRODUCTION-GRADE KUBERNETES: BEST PRACTICES CHECKLIST

Production-Grade 
Kubernetes: Best 
Practices Checklist

IN THIS PAPER
Kubernetes is a complex platform that provides for highly scalable, 

efficient use of computing and storage resources. But it can also be 

highly problematic for companies that just try to “wing it” and figure 

out what to do as they go along.

Don’t let that be you. This paper details best practices you should 

follow to help ensure you realize the optimal benefit of your 

Kubernetes investment. 

Highlights include: 

• Ensuring open and flexible environments

• Standardizing the container build process

• Cluster observability with a single pane of glass

1

CONTENTS
Deployment Best Practices 2

Operations Best Practices 3

They’re ‘Best’ Practices for a Reason 4



2PRODUCTION-GRADE KUBERNETES: BEST PRACTICES CHECKLIST

a good option and one with low barriers to entry. Also, 

Kubernetes has prompted the development of additional 

open source software that runs on the platform. Tools 

like Helm for deployment and Istio for service manage-

ment are open source tools that extend the capabilities of 

the Kubernetes environment.

STANDARDIZE THE CONTAINER BUILD 
PROCESS
Containers are a key building block of a microservice ar-

chitecture, and how they’re managed directly impacts the 

efficiency, reliability, and availability of services running 

in Kubernetes clusters. 

The container build process should be automated using 

a continuous integration/continuous deployment (CI/CD) 

system. Open source tools such as Jenkins are widely used 

CI/CD tools. Major public cloud providers also offer CI/CD 

services. These tools reduce the workload on developers 

when deploying a service. They also allow for automated 

testing prior to deployment, and can support rollback 

operations when needed. 

Container images should be stored in an image repos-

itory. This centralized store should also support image 

scanning to check for security vulnerabilities. By provid-

ing an image repository, you can promote the consistent 

use of approved images. This reduces the chance of 

deploying a misconfigured container. Developers have 

a range of container registry options, including Docker 

Hub, JFrog Container Registry, and JFrog Artifactory. 

For example, a Docker image may require that several 

tools be installed, and those tools may require different 

versions of the same library. Someone unaware of the po-

tential conflict might fail to properly install the library’s 

multiple versions. This could lead to deploying an image 

that will fail in production and require a team of DevOps 

engineers to diagnose in production. 

A standardized image build process helps remediate 

failed deployments. For example, the CI/CD pipeline can 

be configured to perform a canary deployment, in which 

a small amount of traffic is routed to a newly deployed 

service. If there’s a problem, only a small number of 

users are adversely affected. 

Kubernetes is rapidly becoming a key element of en-

terprise IT infrastructure. As with other enterprise 

platforms, there’s a broad array of requirements to keep 

Kubernetes clusters functioning and running efficiently. 

Here are several best practices to employ when running 

Kubernetes in production.

Deployment Best Practices
Kubernetes environments are highly dynamic. Services 

are deployed and updated frequently. Nodes are added 

and removed from clusters. Clusters are spun up and 

down according to workload. 

Kubernetes handles much of the management of this 

lifecycle, but when it comes to deploying services, much 

of the responsibility rests with IT professionals. To 

streamline the ability to deploy and maintain services, 

keep in mind deployment best practices—these ones in 

particular:

• Ensure open and flexible environments

• Standardize the container build process

• Ensure self-service

• Manage applications and storage

ENSURING OPEN AND FLEXIBLE 
ENVIRONMENTS
Kubernetes runs on a variety of computing infrastructure, 

including commodity servers. Existing hardware can be 

redeployed to run Kubernetes along with newly procured 

servers. You have your choice of running Kubernetes on 

bare metal, virtual machines (VMs), or in public clouds. 

If you already have an established VM environment, 

running Kubernetes in that environment can be a logical 

choice. If you would rather not maintain physical infra-

structure, then running Kubernetes in a public cloud is 

If you already have an established 
VM environment, running 
Kubernetes in that environment 
can be a logical choice. 

https://hub.docker.com/
https://hub.docker.com/
https://jfrog.com/container-registry/
https://jfrog.com/artifactory/


3PRODUCTION-GRADE KUBERNETES: BEST PRACTICES CHECKLIST

deployments, it’s important to provide tools for deploy-

ing and scanning applications. 

For example, Helm is a package manager for Kubernetes 

and supports defining, deploying, and upgrading applica-

tions, which can streamline the management of applica-

tions. Security scanning tools should be in place as well, 

to help developers identify vulnerabilities in applications 

before they’re deployed.

APPLICATIONS AND STORAGE
With developers and admins alike working across multi-

ple environments, it’s also important to have policies in 

place to enable efficient use of resources. Consider role-

based access controls (RBAC) policies and limits to ensure 

resources are used fairly, and that no single deployment 

consumes an excessive amount of resources.

Operations Best Practices
In addition to employing deployment best practices, there 

are several operations best practices you should strive to 

implement, including:

• Single pane of glass visibility

• Scaling best practices

• Governance and security

• Upgrading

Together, these best practices can help reduce the 

operational overhead associated with maintaining 

Kubernetes clusters.

CLUSTER OBSERVABILITY
The idea behind single pane of glass visibility is that 

all information needed to understand and diagnose the 

current state of the cluster, deployments, and other com-

ponents should be available from a single tool. 

For example, from a single application, administrators 

should be able to configure monitoring, analyze monitor-

ing data, and specify alerts triggered by that monitoring 

data. Plan to use a standardized set of monitoring tools 

for collecting, storing, analyzing, and visualizing perfor-

mance monitoring data. 

Alternatively, the CI/CD process could employ a rolling 

deployment in which pods are replaced one by one, 

allowing for an incremental transition to a new version 

of a service. Of course both canary and rolling deploy-

ments could be done manually, but that would be more 

time-consuming and error-prone (see Figure 1). 

As part of the image build process, be sure to include 

a monitoring mechanism. Some monitoring tools use 

agents to collect server and application performance data 

and send it to a centralized data store for reporting and 

alerting. It’s important to have visibility into the perfor-

mance of services so you can correct issues that can’t be 

addressed directly by Kubernetes.

ENSURE SELF-SERVICE
Developers should not have to coordinate with IT ad-

ministrators to deploy and monitor services running in 

Kubernetes clusters. To ensure developers can manage 

Figure 1: Deployment models like rolling and canary deploy-
ments help identify any issues with a new deployment before it 
causes any significant impact to production.

Before

V1 V1 V1

During

V1 V1 V1 V2 V2 V2

After

V1 V1 V1 V2 V2 V2

Before

V1 V1 V1 V1 V1 V2

During After

V2 V2 V2

CANARY DEPLOYMENT MODEL

ROLLING DEPLOYMENT MODEL

It’s important to have visibility 
into the performance of services 
so you can correct issues that 
can’t be addressed directly by 
Kubernetes.



4PRODUCTION-GRADE KUBERNETES: BEST PRACTICES CHECKLIST

encryption to secure communications both within and 

outside of the cluster. 

It’s a best practice to scan applications for vulnerabili-

ties. In a similar way, you should review vulnerabilities 

in Kubernetes software and patch as necessary. This is 

a situation in which it may be beneficial to have multiple 

clusters, because a patch can be deployed to a single clus-

ter and evaluated before rolling it out to others.

UPGRADING
Kubernetes is under active development, which provides 

for new functionality and improved reliability. As part of 

your Kubernetes management strategy, plan to upgrade 

while supporting production workloads. For example, 

the master will need to be upgraded before nodes. To 

avoid disruption, you can run multiple master nodes and 

upgrade one master at a time or use rolling upgrades to 

ensure zero downtime during the upgrade process.

Similarly, nodes can be upgraded incrementally. Also 

plan to patch and upgrade operating systems running on 

nodes. Be sure to maintain up-to-date backups. Backups 

are an important insurance measure for recovering from 

a failed upgrade. 

They’re ‘Best’ Practices for a 
Reason
Kubernetes is a complex platform that provides for highly 

scalable, efficient use of computing and storage resourc-

es. But it can also be highly problematic for companies 

that just try to “wing it” and figure out what to do as 

they go along.

Don’t let that be you. Following the best practices out-

lined here will help to ensure that you realize the optimal 

benefit of your Kubernetes investment. 

This monitoring functionality can also be used to mon-

itor compliance with SLAs. Another advantage of stan-

dardizing is that you can define templates to promote 

reusability.

SCALING BEST PRACTICES
When scaling with Kubernetes, you have the option of 

scaling the size of a cluster or increasing the number of 

clusters. When workloads vary widely, the Horizontal 

Pod Autoscaler can be used to adjust the number of 

nodes in a deployment. Kubernetes also has a Vertical 

Pod Autoscaler, but that’s currently in beta release and 

shouldn’t be used in production. 

One scaling question you’ll face is whether to run one 

cluster or multiple clusters. Kubernetes can scale to 

thousands of nodes and hundreds of thousands of pods, 

so a single cluster can meet many use cases. 

There are, however, some advantages of using multiple 

clusters. One is reliability. In the event of a cluster failure, 

all workloads are affected in a single cluster environment. 

Also, with multiple clusters different development teams 

can manage their own clusters—and that can increase 

the velocity of each team, if it doesn’t need to coordinate 

cluster changes with other teams.

GOVERNANCE AND SECURITY
As with any enterprise platform, you’ll need to consider 

governance and security. To start with, plan to imple-

ment granular RBAC. These can be used to implement 

the principle of “least privilege,” which states that users 

should have only permissions they need to perform tasks 

assigned to them and no more. 

Use audit trails to track security-related changes in the 

system. For example, operations, like adding a user 

and changing permissions, should be logged. Also, use 

Kubernetes can scale to 
thousands of nodes and hundreds 
of thousands of pods, so a single 
cluster can meet many use cases. 

Kubernetes is under active 
development, which provides for 
new functionality and improved 
reliability. 


	Deployment Best Practices
	Operations Best Practices
	They’re ‘Best’ Practices for a Reason

