
1CREATING AN OPTIMAL DEVOPS EXPERIENCE WITH DISTRIBUTED KUBERNETES

Creating an Optimal
DevOps Experience with
Distributed Kubernetes

IN THIS PAPER
Developers need a consistent, stable platform to do their best work.

That can be tricky when the platform is Kubernetes-based, as its

distributed nature can create a lot of workflow friction. But using the

right tools and implementing proper standards can go a long way

toward greasing that pipeline.

1

CONTENTS
Platform Engineering Optimal
Experience 2

Consistent Policies, Practices, and
Tools 2

The Negative Impact of Shadow IT 3

Key Resources for Developers 3

Standardizing Commonly Needed
Resources 4

Streamlining Package Management 4

2CREATING AN OPTIMAL DEVOPS EXPERIENCE WITH DISTRIBUTED KUBERNETES

applications on a platform they manage— but expect

to have platform engineers take over responsibility for

the platform.

Kubernetes can help deliver the optimal engineering expe-

rience. It’s designed to automate and orchestrate reliable

computing resources for containerized applications. One

important aspect of Kubernetes is that it can be deployed

in multiple environments, including:

• Centralized data centers, either on-premises or colocat-

ed in a third-party data center

• Micro data centers used in remote offices

• Point-of-presence locations such as retail stores

• Edge computing settings for Internet of Things (IoT)

deployments

This ability to deploy Kubernetes to a wide variety of

environments is a significant advantage over deploying

customized, case-specific servers. With a single, common

platform for executing workloads, developers can spend

less time on operational issues with the help of tooling that

supports the Kubernetes platform.

CONSISTENT POLICIES, PRACTICES,
AND TOOLS
Consider the challenges of complying with regulations and

policies while maintaining an agile, rapid-feature-delivery

engineering environment. There are multiple dimensions

of compliance that must be attended to.

For example, developers, who are also operations managers,

need tools to help ensure authentication mechanisms are in

place. In many cases, authentication and identity manage-

ment services are provided by a centralized service that needs

to be accessible from various Kubernetes deployments.

Highly distributed systems like Kubernetes are constantly

generating, storing, and transmitting data. Many regu-

lations governing privacy and the control of sensitive in-

formation have rules about protecting the confidentiality

of data. To meet these requirements, it’s a best practice to

employ encryption for data in motion and for data at rest.

Kubernetes environments should be deployed in ways that

provide these encryption services by default. Application

Introduction
Kubernetes is widely recognized as a platform that enables

highly efficient use of infrastructure, but organizations

need to understand those benefits are maximized when the

developer experience itself is optimized.

Developers are increasingly assuming responsibilities for

systems operations. In the past, it was common to have a

separate team of systems administrators responsible for

deploying applications, monitoring resource use, and re-

sponding to incidents that disrupted services. Developers

who use agile methodologies are more likely to employ

practices that include responsibility for ensuring their

software operates efficiently and reliably.

This is understandable, since one aspect of agile engi-

neering practices is the frequent release of new versions of

services. Rather than hold up the release of an update so

that multiple features can be included, it’s more efficient

to release small changes continually. Continuous integra-

tion/continuous delivery (CI/CD) pipelines, coupled with

version control platforms that promote collaboration,

enable this kind of rapid release of new features. It also

means that the developers who are working in the code and

revising it are in the best position to understand the cause

of performance or reliability problems.

PLATFORM ENGINEERING OPTIMAL
EXPERIENCE
Developers depend on a stable environment to work. This

entails high uptime, reliability, and performance. Platform

engineering teams should treat the platform as a product.

They provide this platform for developers, enabling them

to create services for their customers.

This includes building teams, processes, and a culture that

continually improves—not just sustains—the platform.

Using agile approaches, developers can deliver initial

The developers who are working
in the code and revising it are in
the best position to understand
the cause of performance or
reliability problems.

3CREATING AN OPTIMAL DEVOPS EXPERIENCE WITH DISTRIBUTED KUBERNETES

These kinds of shadow IT practices lead to inconsistent

management practices. Instead of a common operations

model, organizations are left with a fractured DevOps situ-

ation that makes it more difficult for teams to collaborate.

Teams will develop different procedures and use different

tools, and this often means each team takes on learning

on its own and may not benefit from what others have

experienced.

Clearly, a consistent set of policies, practices, and tools

across an organization is essential to maintaining an op-

timal developer experience. It’s also important to consider

what might be required for an application owner’s optimal

experience.

The Application Owner’s Optimal
Experience
Application owners have an obvious stake in ensuring an

optimal developer environment. Key considerations from

their perspective include:

• Ensuring developers have needed resources

• Standardizing on commonly needed resources and

middleware

• Using tools to streamline package management within

Kubernetes deployments

KEY RESOURCES FOR DEVELOPERS
Key resources for developers span the development cycle.

There should be support for full stack development. UI

developers typically work with frameworks for creating

complex Web interfaces, while back-end developers are

more likely to need tools to help optimize high-perfor-

mance code.

Tooling should also include support for version control

and CI/CD. These tools are becoming more feature-rich

and integrated so that as soon as changes are checked

into a repository, they can trigger a build, with testing and

eventual release to follow.

Service discovery and application catalogs are important

for ensuring developers know the kinds of services avail-

able in the environment. These tools can foster the sharing

of services and reduce redundant code.

developers shouldn’t have to learn the intricacies of con-

figuring full disk encryption or setting up TLS connections

between nodes. Role based access controls (RBACs) are

essential for securing the platform. Given the large num-

ber of services and tenants, this can be a difficult task and

requires tooling to support and maintain proper RBAC

configurations.

Kubernetes should be deployed with controls in place to

support other governance requirements. For example,

security scans should be configured to run reliably on all

clusters. Again, this is a necessary capability, but not one

that should require significant developer time.

Tooling should be in place to help with capacity planning

and cost control. Kubernetes is designed to allocate resourc-

es to workloads that need them. Those resource demands

can, and often do, change over time, so it’s important to

monitor resource utilization and growth rates in work-

loads. If a cluster has insufficient resources, developers

may be forced to limit features or find other workarounds

to deal with the lack of capacity. Poor capacity planning can

introduce significant friction in the development process

and slow the creation of new services.

Organizations are increasingly adopting multi-cloud plat-

forms, so you’ll need to consider integration of different

systems. Legacy on-premises applications and servers

may be used alongside servers running in a public cloud,

for instance. Kubernetes is well suited to these kinds of

deployment models, but there must be tooling in place to

maintain the reliability of these systems.

THE NEGATIVE IMPACT OF SHADOW IT
When appropriate tooling isn’t in place and there’s

insufficient centralized support, developers will likely

develop their own solutions to operational challenges. For

example, when platform tools like CI/CD pipelines aren’t

centrally standardized, departments or teams of engineers

may implement their own solutions.

This is problematic for several reasons. For one, it’s ineffi-

cient to have multiple teams duplicating work. It also means

that individual teams are responsible for maintaining tools

and ensuring they’re deployed in compliance with policies

and regulations. They also become responsible for ensuring

that all service-level agreements (SLAs) are being met.

4CREATING AN OPTIMAL DEVOPS EXPERIENCE WITH DISTRIBUTED KUBERNETES

monitored and maintained along with other applications.

It can be a challenge to keep track of packages and their

state in a single cluster, but the workload is multiplied

when you include Kubernetes deployments in distributed

and edge computing environments.

You need automation to support package management.

Fortunately, Helm and Kustomize are two such package

managers that can streamline package management.

Platform9 Can Help
The promise of Kubernetes to more efficiently employ

computing and storage resources is best realized when you

take into account how Kubernetes is used and maintained

by developers. Kubernetes is complex, and as responsibil-

ity for managing clusters moves from a small number of

clusters in a single data center to hundreds or thousands of

distributed clusters, there’s a risk of not knowing how to

run such a distributed platform optimally.

Platform9 has experts that not only understand

Kubernetes, but have the real-world experience with

large-scale deployment to help you with your Kubernetes

initiatives.

STANDARDIZING COMMONLY NEEDED
RESOURCES

Application owners should also consider standardizing

commonly needed resources and middleware. For exam-

ple, multiple services may need a relational database back

end. There are many high-quality options to choose from,

including both open source and commercial products.

While different relational databases have distinct features

and capabilities, application owners must ask if the cost

of supporting two or more databases is outweighed by the

benefit of those specialized features. In many cases, the

economics favor standardizing on a single kind of database.

It’s also important to make shared components available

in a central catalog that are available for developers to eas-

ily deploy with a few clicks. This provides the governance

that the operations teams need and the self-service agile

experience that developers crave.

STREAMLINING PACKAGE MANAGEMENT
Similarly, organizations should standardize on load

balancers and monitoring tools. While different load bal-

ancers may have different features, the core job of a load

balancer isn’t likely to vary much among services running

in the same environment.

A single, consolidated monitoring tool should be selected

as well, with performance metrics collected in a single tool.

This allows for more comprehensive analysis of perfor-

mance monitoring data than if the data were spread across

multiple tools.

Logging and distributed tracing tools are also important

for understanding the state of your systems, identifying

bottlenecks, and understanding the root causes of perfor-

mance problems.

Service meshes, like Istio, provide additional services on

top of Kubernetes (see Figure 1). Standardizing on a single

service mesh across all deployments of Kubernetes will also

improve the overall utility of Kubernetes from a developer

and application owner perspective.

For all of the benefits of Kubernetes, there are some

challenges to using the platform. Within a single cluster,

dozens of packages may be deployed, all of which must be

Figure 1: Service mesh traffic overview

Ingress
Gateway

Front End

Control Plane Egress Gateway

Proxy
Sidecar

Back End

Proxy
Sidecar

Database

Proxy
Sidecar

	Platform Engineering Optimal Experience
	Consistent Policies, Practices, and Tools
	The Negative Impact of Shadow IT
	Key Resources for Developers
	Standardizing Commonly Needed Resources
	Streamlining Package Management

