
Introduction
WHAT IS FISSION?
Fission is an open-source serverless function framework for Kubernetes

with a focus on developer productivity and high performance.

With Fission, you can write short-lived functions in any language and

map them to HTTP requests (or other event triggers). Fission executes

these functions on-demand, ensuring that resources are only used

when necessary.

Fission operates on just the code: Docker and Kubernetes are abstracted

away under normal operation (though you can use both to extend

Fission if you want to). This allows you to quickly create services on

Kubernetes without a lot of in-depth learning and setup. You won't have

to manage container builds, registries, and so on.

Fission is extensible to any language; the core is written in Go, and

language-specific parts are isolated Environments that you can install,

extend, or build from scratch (more below).

Fission and Kubernetes together form an open-source stack that gives

you productivity and operational advantages on any infrastructure —

whether it's the public cloud or your own datacenter.

USES
You can use Fission for a variety of tasks, including DevOps automation

and Slack bots. You can also create a full REST API backend out of a

set of functions — we'll follow one such example later in this Refcard.

Functions can also be used to react to some sort of event, such as

generating a thumbnail image when a large image is uploaded into an

object store.

Installation and Setup
PREREQUISITES
A KUBERNETES CLUSTER

If you already have a Kubernetes cluster, you can skip this section.

One easy way to get started with a cluster is to use a managed Kubernetes

cluster from a cloud provider: Google Kubernetes Engine, Azure

Kubernetes Service, Amazon's EKS, or DigitalOcean's Kubernetes service.

Another way is to use Minikube to get a single-node Kubernetes cluster

on your laptop.

You will also need the Kubernetes CLI (kubectl).

INSTALLING FISSION
Fission can be installed either with the Helm installer or just using a YAML

file. Full detailed instructions are online at docs.fission.io/installation.

Fission.io
An Open Source, Kubernetes-Native
Serverless Framework

CONTENTS

 ö Introduction

 ö Installation and Setup

 ö Conceptual Introduction

 ö How Fission Runs Your Functions

 ö How to Use Fission

 ö Set Up an Environment

 ö Create a Function

 ö Invoke the Function

 ö View the Functions Logs

 ö Maintaining Infrastructure as Code

 ö And More...
WRITTEN BY SOAM VASANI
SOFTWARE ENGINEER AT PLATFORM9 SYSTEMS

BROUGHT TO YOU IN PARTNERSHIP WITH

1

Get Started with Serverless
on Kubernetes in 5 Minutes!

Install Fission now at fission.io/install

https://cloud.google.com/kubernetes-engine/
http://docs.fission.io/installation
https://docs.fission.io/installation/?utm_medium=pdf&utm_source=dzone&utm_campaign=dzone-fission-refcard

Get Started with Serverless on
Kubernetes in 5 Minutes!

Accelerate time
to value with
Kubernetes

Focus on code,
not plumbing:

just write your code,
Fission will make it
run on Kubernetes

Run your serverless
functions anywhere:

on-prem, in the
public cloud.

Fission Workflows
make it easy to build

complex apps that
span many functions

Install Fission now at fission.io/install

https://docs.fission.io/installation/?utm_medium=pdf&utm_source=dzone&utm_campaign=dzone-fission-refcard

3 BROUGHT TO YOU IN PARTNERSHIP WITH

FISSION.IO - AN OPEN SOURCE, KUBERNETES-NATIVE SERVERLESS FRAMEWORK

With helm, the Fission install is done with:

helm install --name fission --namespace fission

https://github.com/fission/fission/releases/

download/1.0.0/fission-all-1.0.0.tgz

You'll also need the Fission CLI, which you can get from the GitHub

releases page: github.com/fission/fission/releases.

Conceptual Introduction
Fission has three main concepts: Functions, Environments, and Triggers.

FUNCTIONS
A Fission function is something that Fission executes. It's usually a

module with one entry point, and that entry point is a function with a

certain interface. A number of programming languages are supported

for Functions.

Here's an example of a simple function in JavaScript:

module.exports = async function(context) {

 return {

 status: 200,

 body: "Hello, world!n"

 };

}

ENVIRONMENTS
Environments are the language-specific parts of Fission. An Environment

contains just enough software to build and run a Fission Function.

Since Fission invokes functions through HTTP, this means the runtime

of an environment is a container with an HTTP server, and usually

a dynamic loader that can load a function. Some environments

also contain builder containers, which take care of compilation and

gathering dependencies.

You can modify any of Fission's existing environments and rebuild them,

or you can also build a new environment from scratch.

The following pre-built environments are currently available for use

in Fission:

ENVIRONMENT IMAGE

NodeJS (Alpine) fission/node-env

NodeJS (Debian) fission/node-env-debian

Python 3 fission/python-env

Python 2.7 fission/python-env-27

Go fission/go-env

Ruby fission/ruby-env

Binary (for executables or scripts) fission/binary-env

 .NET fission/dotnet-env

 .NET 2.0 fission/dotnet20-env

Perl fission/perl-env

PHP 7 fission/php-env

TRIGGERS
Functions are invoked on the occurrence of an event; a Trigger is what

configures Fission to use that event to invoke a function. In other words,

a Trigger is a binding of events to function invocations.

For example, an HTTP Trigger may bind GET requests on a certain path

to the invocation of a certain function.

There are several types of triggers besides HTTP Triggers: Timer Triggers

invoke functions based on time; Message Queue Triggers exist for

Kafka, NATS, and Azure queues; and Kubernetes Watch Triggers invoke

functions when something in your cluster changes.

OTHER CONCEPTS
These are concepts you may not need while starting out but might be

useful to know in more advanced usage.

ARCHIVES
An Archive is a zip file containing source code or compiled binaries.

Archives with runnable functions in them are called Deployment

Archives; those with source code in them are called Source Archives.

PACK AGES
A Package is a Fission object containing a Deployment Archive and a

Source Archive. A Package also references a certain environment.

When you create a Package with a Source Archive, Fission automatically

builds it using the appropriate builder environment and adds a

Deployment Archive to the package.

SPECIFICATIONS
Specifications (specs for short) are simply YAML config files containing

the objects we've spoken about so far — Functions, Environments,

Triggers, Packages, and Archives.

Specifications exist only on the client side and are a way to instruct the

Fission CLI about what objects to create or update. They also specify

how to bundle up source code, binaries, etc. into Archives.

The Fission CLI features an idempotent deployment tool that works

using these specifications.

https://github.com/fission/fission/releases

4 BROUGHT TO YOU IN PARTNERSHIP WITH

FISSION.IO - AN OPEN SOURCE, KUBERNETES-NATIVE SERVERLESS FRAMEWORK

How Fission Runs Your Functions
Fission runs your functions in Kubernetes pods. Let's say you've set up a

function, an environment for it, and an HTTP Trigger.

When a request comes in to the router, the function is placed in a pod in

one of two ways:

With the Pool-based executor, a pool of containers is kept "pre-warmed"

on the cluster. This pool is configured in the environment — its size and

CPU/memory resource usage can be specified in the Environment Spec.

When using this option to execute functions, a function is loaded on-

demand into a pre-warmed pod. That process takes about 50msec to a

few hundred msec, depending on the size of the function. Most functions

will load within 100msec. This pod is kept alive as long as there are

function requests coming in. If five minutes pass with no requests, the

pod is killed. That is how the resource usage of the function is closely

mapped to its actual demand.

With the New Deployment executor, a new Kubernetes Deployment is

created either at deployment time or when the first request comes in to

the function. This executor is configured by setting a min and max scale.

The cases with min scale == 0 are for use cases, which are not latency-

sensitive. On the other hand, setting min scale >= 1 allows your function

to fully eliminate provisioning time from even the cold start, giving you

excellent latency benefits at the expense of keeping the pod running on

the cluster, even when there's no demand for it.

The executors allow you, as a user, to decide between latency and a

small idle cost trade-off. Depending on your needs, you can choose a

combination that works best for your use case.

EXECUTOR TYPE MIN SCALE LATENCY IDLE COST

Newdeploy 0 High
Very low, pods get

cleaned up after idle time

Newdeploy >0 L ow M
Medium, Min Scale, num-

ber of pods are always up

Poolmgr 0 Low
Low, pool of pods are

always up

How to Use Fission
In this section, we'll walk you through a simple example of setting up

your Fission cluster with a Node.js environment, creating a simple Hello

World function and invoking it over HTTP.

Set Up an Environment
You can create an environment on your cluster from an image for that

language. The simplest way is:

$ fission env create --name node --image fission/node-env

Optionally, you can specify CPU and memory resource limits. You can

also specify the number of initially pre-warmed pods, which is called

the poolsize.

Also, you can specify a builder image. This image will be used to

build functions — in the case of Node.js, this usually means running

npm install, which gathers dependencies specified in the function's

package.json.

$ fission env create --version 3 --name node --image

fission/node-env --builder fission/node-builder --mincpu

40 --maxcpu 80 --minmemory 64 --maxmemory 128 --poolsize

4

VIEWING ENVIRONMENT INFORMATION
You can list the environments or view information of an individual

environment:

$ fission env list

<list of environments>

$ fission env get --name node

<one environment's information>

$ kubectl get environment.fission.io -o yaml

YAML of Fission environment object

Create a Function
Now that you have an environment, you're ready to create and run a

function.

This simple function in Node.js will output the string "Hello, world!":

module.exports = async function(context) {

 return {

 status: 200,

 body: "Hello, world!n"

 };

}

Let's create this function on the cluster. This only registers the function

with Fission; it doesn't run it yet. It associates the function with the node

environment that you previously created.

$ fission function create --name hello --code hello.js

--env node

Invoke the Function
You can invoke the function through Fission's CLI, or by creating an HTTP

trigger and sending an HTTP request.

To invoke it through Fission, use the command:

$ fission fn test --name hello

5 BROUGHT TO YOU IN PARTNERSHIP WITH

FISSION.IO - AN OPEN SOURCE, KUBERNETES-NATIVE SERVERLESS FRAMEWORK

This should now output "Hello, world!" A lot happens behind the scenes

when you do this — Fission sends the request to the router; the router

calls the Fission executor to get a running pod that has this function; the

executor chooses a pre-warmed pod from the pool to load the function

into; the router then proxies the request to this pod; the result is routed

back to the CLI and displayed in the terminal.

Also, once this runs, the pod is cached for a few minutes; if you run the

same command again, you may notice it runs faster.

You can also invoke the function through an HTTP Trigger. An HTTP Trigger

associates HTTP requests on a particular URL path with the function.

$ fission httptrigger create --function hello --url

/hello

If you've set up your cluster so that the router is accessible from outside

it, you can now invoke the function simply using curl:

$ curl http://<router ip address>/hello
Hello, World!

View the Functions Logs
There are two ways to view function logs: using Kubernetes or Fission's

log aggregation.

USING KUBERNETES
Since functions run in pods, anything that lets you view pod logs will

also let you view function logs. For example, you can use kubectl logs:

First, find the pod using its labels:

kubectl -n fission-function get pod -l

functionName=hello

Then retrieve the logs of that pod:

kubectl -n fission-function logs <pod name>

While this method doesn't rely on any external log aggregation, it's only

usable for a short time, because Fission deletes idle pods (and their logs

get deleted with them). Because of this, Fission also aggregates logs into

a database that it installs on the cluster (log aggregation is included when

you install fission-all and excluded if you installed fission-core only).

USING FISSION'S LOG AGGREGATION
With Fission's log aggregation, you can view function logs simply with:

$ fission function logs --name hello

Monitor the Function
Fission exposes Prometheus metrics. This allows you track various

metrics over time, for example:

• Function duration

• Function error code statistics

• Rate of function invocation

The full Fission installation also contains a Prometheus installation.

The fission-core install can be monitored with a separately-installed

Prometheus instance.

You can query the Prometheus console with fission metrics, such

as fission_function_calls_total or fission_function_

duration_seconds, etc. Prometheus functions can be used to

calculate metrics derived from these queries. For example, you can

graph the rate of incoming function calls using the Prometheus rate

function on the fission_function_calls_total metric.

Maintaining Infrastructure as Code
How should you organize source code when you have lots of functions?

How should you automate deployment into the cluster? What about

version control? How do you test before deploying?

The answers to these questions start from a common first step: how do

you specify an application?

DECLAR ATIVE SPECIFICATIONS
Instead of invoking the Fission CLI commands, you can specify your

functions in a set of YAML files. This is better than scripting the fission

CLI, which is meant as a user interface, not a programming interface.

You'll usually want to track these YAML files in version control along

with your source code. Fission provides CLI tools for generating these

specification files, validating them, and "applying" them to a Fission

installation.

What does it mean to apply a specification? It means putting specification

to effect: figuring out the things that need to be changed on the cluster

and updating them to make them the same as the specification.

Applying a Fission spec goes through these steps:

• Resources (functions, triggers, etc.) that are in the specification

but don't exist on the cluster are created. Local source files are

packaged and uploaded.

• Resources that are both in the specs and on the cluster are

compared. If they're different, the ones on the cluster are

changed to match the spec.

• Resources present only on the cluster and not in the spec are

destroyed. (This deletion is limited to resources that were created

by a previous apply; this makes sure that Fission doesn't delete

unrelated resources. See below for how this calculation works.)

Note that running apply more than once is equivalent to running it once:

in other words, it's idempotent.

USAGE SUMMARY
Start using Fission's declarative application specifications in three steps:

1. Initialize a directory of specs: fission spec init

6 BROUGHT TO YOU IN PARTNERSHIP WITH

FISSION.IO - AN OPEN SOURCE, KUBERNETES-NATIVE SERVERLESS FRAMEWORK

2. Generate some YAMLs: fission function create --spec
...

3. Apply them to a cluster: fission spec apply --wait

You can also live-reload into a development cluster with fission spec

apply --watch --; this lets you have immediate feedback while

you're coding.

You can find a detailed tutorial on using declarative specifications on the

Fission docs site at docs.fission.io/usage/developer-workflow/.

Function Composition
For performance and simplicity, FaaS functions are often quite small.

They are intended to have a single responsibility and no more. However,

real-world applications often require composing together complex

functionality out of smaller, simpler pieces.

There are many approaches to this. One could simply make functions

larger, and this works up to a point. Beyond that, functions with too

much in them are harder to scale and operate efficiently. Once you have

multiple functions, you're faced with the decision of how to compose

them — how to call one function from another.

An obvious way to compose functions is by invoking them over HTTP.

While this generally works, the caller spends the entire duration of the

inner function call waiting for a result. If the caller uses a significant

amount of memory, this is wasteful. Also, this kind of composition does

not handle failures well — there is no persistence and no retries.

Another approach is to use message queues. This approach makes

the communication between functions more reliable. However, the

programming model is not as simple. Instead of straight code in one

place, you have to think of the system as a flow of events and actions

that are triggered by them. You also have to manage the functions,

message queue, and triggers that bind queues to functions. This can

get messy (consider, for example, doing non-compatible upgrades on

multiple functions).

Finally, Fission Workflows is an approach that aims to combine the

advantages of message queues with the simplicity of HTTP invocations.

Workflows allows you to create a DAG (directed acyclic graph) of

function calls, and then orchestrates those calls. Internally, it uses a

message queue — this gives you the advantages of persistent reliable

messaging, with a more ergonomic programming model.

An in-depth look at Workflows is beyond the scope of this guide. You can

learn more about Fission Workflows, including some examples, at its

GitHub page: github.com/fission/fission-workflows/.

Sample Application — REST API Backend for a Bank
We've shown a single function and an HTTP route, but what about more

complex applications involving multiple API endpoints? We've built a

sample web application for a bank to demonstrate a non-trivial application.

This application contains an API endpoint and function for each of

the operations a user of a bank might perform: creating an account,

depositing or withdrawing from it, transfers, etc.

You can find the full application on GitHub: github.com/fission/fission-

bank-sample.

References
SUPPORTED LANGUAGES
NODE.JS

• Environment command line: fission environment create
--name node --env fission/node-env --builder

fission/node-builder

• Documentation URL: docs.fission.io/languages/nodejs/

• Sample code: github.com/fission/fission/tree/master/

examples/nodejs

PY THON

• Environment command line: fission env create --name
python --image fission/python-env --builder

fission/python-builder

• Documentation URL: docs.fission.io/languages/python/

• Sample code: github.com/fission/fission/tree/master/

examples/python

GO

• Environment command line: fission environment
create --name go --env fission/go-env --builder

fission/go-builder

• Documentation URL: docs.fission.io/languages/go/

• Sample code: github.com/fission/fission/tree/master/

examples/go

JAVA

• Environment command line: fission environment create
--name java --env fission/jvm-env --builder

fission/jvm-builder

• Documentation URL: docs.fission.io/languages/java/

• Sample code: github.com/fission/fission/tree/master/examples/

jvm/java

RUBY

• Environment command line: fission environment create
--name ruby --env fission/ruby-env --builder

fission/ruby-builder

• Sample code: github.com/fission/fission/tree/master/

examples/ruby/

BINARY

• Environment command line: fission environment create
--name binary --env fission/binary-env

https://docs.fission.io/usage/developer-workflow/
https://github.com/fission/fission-workflows/
https://github.com/fission/fission-bank-sample
https://github.com/fission/fission-bank-sample
https://docs.fission.io/languages/nodejs/
https://github.com/fission/fission/tree/master/examples/nodejs
https://github.com/fission/fission/tree/master/examples/nodejs
https://docs.fission.io/languages/python/
https://github.com/fission/fission/tree/master/examples/python
https://github.com/fission/fission/tree/master/examples/python
https://docs.fission.io/languages/go/
https://github.com/fission/fission/tree/master/examples/go
https://github.com/fission/fission/tree/master/examples/go
https://docs.fission.io/languages/java/
https://github.com/fission/fission/tree/master/examples/jvm/java
https://github.com/fission/fission/tree/master/examples/jvm/java
https://github.com/fission/fission/tree/master/examples/ruby/
https://github.com/fission/fission/tree/master/examples/ruby/

7

FISSION.IO - AN OPEN SOURCE, KUBERNETES-NATIVE SERVERLESS FRAMEWORK

BROUGHT TO YOU IN PARTNERSHIP WITH

• Sample code: github.com/fission/fission/tree/master/

examples/binary/

C# .NET

• Environment command line: fission environment create
--name dotnet --env fission/dotnet-env

• Sample code: github.com/fission/fission/tree/master/

examples/dotnet/

PERL

• Environment command line: fission environment create
--name php --env fission/perl-env

• Sample code: github.com/fission/fission/tree/master/

examples/perl/

PHP

• Environment command line: fission environment create
--name php --env fission/php-env

• Sample code: github.com/fission/fission/tree/master/examples/

php7/

Other Useful Resources

• Project home: fission.io

• GitHub: github.com/fission/fission

• Example repos: github.com/fission/fission-bank-sample

• Slack: slack.fission.io

• Twitter: twitter.com/fissionio

Devada, Inc.

600 Park Offices Drive

Suite 150

Research Triangle Park, NC

888.678.0399 919.678.0300

Copyright © 2019 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects, and decision makers. DZone offers something for

everyone, including news, tutorials, cheat sheets, research

guides, feature articles, source code, and more. "DZone is a

developer’s dream," says PC Magazine.

Written by Soam Vasani, Software Engineer at Platform9 Systems
Soam Vasani is a software engineer at Platform9 Systems. He leads the Fission engineering team and has also

worked on Platform9’s Kubernetes cluster deployment and management product. His past work includes

distributed file systems and other datacenter products at VMware, and contributions to the GNU debugger and

toolchain. He’s interested in distributed systems, tools, frameworks, and programming languages.

https://github.com/fission/fission/tree/master/examples/binary/
https://github.com/fission/fission/tree/master/examples/binary/
https://github.com/fission/fission/tree/master/examples/dotnet/
https://github.com/fission/fission/tree/master/examples/dotnet/
https://github.com/fission/fission/tree/master/examples/perl/
https://github.com/fission/fission/tree/master/examples/perl/
https://github.com/fission/fission/tree/master/examples/php7/
https://github.com/fission/fission/tree/master/examples/php7/
https://fission.io
https://github.com/fission/fission
https://github.com/fission/fission-bank-sample
http://slack.fission.io
https://twitter.com/fissionio

