Serverless Operations

Soam Vasani

fission.io

i % fission

http://fission.io

Fission: Serverless Functions

+ Open source Kubernetes-native FaaS framework

- Lambda-like service both on-premise and in the cloud

- Designed to be easy to use, productive and fast

+ Tunable cost/performance tradeofts

Why Serverless

. Developer productivity: focus on application code

- Pay for what you use, idle = free

- Will occupy an important part of the software stack in the future

. On-premise benefits!

Production-ready Serverless Apps

. Serverless will exist in various forms in modern infrastructure

- FaaSin the cloud and on-premise
+ As cloud services (Lambda etc) and on Kubernetes

- We want the productivity advantages — but we want to go faster, safely
and at scale

The DevOps Pipeline

Dev
—»| pre-merge checks
changes
\# build, packaging
\b validate, approve
~
\b deploy to production
D e i
ensure uptime |—»
User

Serverless Operations from Dev to Production

Some best practices and patterns:
1. Declarative configuration
2. Live-reload for fast feedback
3. Record-replay for testing and debugging
4. Canary Deployments
5. Monitoring with metrics and tracing

6. Costoptimization

Specitying Applications

Spoiler Alert: Use declarative configuration!

Specitying Apps: Declarative Config

- Specify app source, packaging, and configuration as a series of
configuration files, rather than imperative scripts

- Imperative: “Copy this file there and run it”

- Declarative: “Ensure this file exists and that it’s running”

Benefits of Declarative Config

- Now that we’ve specified our app declaratively, we can:

- Do better validation before deploys
- Do one-click deploys

- Deploy without worrying about current state of the cluster: the system will
find differences and reconcile them. Great for upgrades!

- Version everything in Git: Collaborate, auto-deploy, rollback. “Gitops”

- Watch files and “live-test” your code

Declarative Contig in Fission

- Fission resources (Functions, Environments, Triggers) are Kubernetes
Custom Resources (CRDs), so they can be stored as YAML/JSON files

- Fission automatically generates initial config: Never write YAML from
scratch

"fission function create —--spec ..

- Also specity packaging: how local files get packaged and uploaded

Deploying with Declarative Config

« fission spec validate
« Checks for consistency and common errors
« fission spec apply
1. Packages source code
2. Uploads to cluster
3. Builds, gathers dependencies (if necessary)

4. Creates/Upgrades/Deletes Fission Kubernetes resources

| ive-Reload

Fast feedback means fewer bugs

Live-reload: Test as You Type

-+ The sooner you find the problem, cheaper it is to fix

- Accelerating feedback loops improves quality

- “Live-reload” means code is instantly deployed into a test system as soon

the developer is saving their files

- Instant feedback on whether the change is correct

Live-reload in Fission

« fission spec apply —-—-watch

- Save your file, fission deploys it to a test cluster automatically within 1-5
seconds

- Because you’re testing on a real cluster, you can mimic your real
deployment more closely

- This gives you very quick feedback on whether your changes are correct

Record-Replay

Reproducing bugs is the easiest way to get them fixed

Record-Replay

- Record-replay is a technique for saving the events that invoked a function

and simulating these events at a later point for testing or debugging

- Testing: Replay a request to test if a new version of a function behaves

like the old one: regression testing

- Debugging: Inspect execution of a function on a past input

Record-Replay Use Cases

- Dev can use Recording during testing to make sure we can reproduce a

failure

- Ops can enable recording on a subset of production traffic, to enable

devs to reproduce problems, debug them, and verity updated versions

Record-Replay in Fission

+ Fission has built-in record-replay, which can store HTTP requests and

responses, and replay on demand

- Fission lets you create “recorder” resources for functions, which configure

what is recorded and how long it’s retained

- Replay requests on demand, either on a new version or with a debugger

on the old version

4

Canary Deployments

Reduce risk by slow, careful roll out of new versions

Reducing the Risk of Failed Deployments

- After all testing is done, deployment to production is still risky
- Test and Staging environments are never quite the same as production

- After a version is qualified in testing, a good strategy is to deploy
incrementally

- For example, 10% of your users get the new version, and if all goes well
you gradually increase that percentage.

Canary Deployments

- Let’s say we have version V1 deployed

+ We've tested version V2 and are ok ?ge{lgsp
with it in testing % I —
% fﬂ _ > {V,}
- Now we deploy version V2 but only ~ -

send 20% of users to it

- Thisis a canary deployment — we J%D E——
proceed with the rollout only if the
new version works well on the 20%

Automating Canary Deployments

. With Canary Deployments you have to monitor for success of the canary,
and decide whether to go ahead with the deployment

- In a Faa$S system, we know whether a function succeeded or failed

- We can automate the process of rolling forward or rolling back

Automated Canaries in Fission

- Fission has built-in automated canary deployments. They can be

configured with:

- The fraction of traffic for the new version

- The error rate that we call a failure

- The rate at which to “grow” the new version as long as it’s succeeding

- The function is rolled back at any point if it does not succeed

Traffic Graph in Canary Deployments

|
|
l |

(007

| NEW
VERSION
7e OF
TRAFFIC ,
I
- OLD
 \VERSION
O/ — | -

Metrics, Tracing, Logs, Alerts

Understand your systems performance

Monitoring Serverless Systems

- Many aspects: logs, metrics, alerts, tracing

- Log Aggregation using fluentd — save them somewhere searchable (e.g.
Elastic stack)

.+ Metrics: Use Prometheus

- Prometheus has Alertmanager which can be used for alerts based on
metrics

- Tracing: Use Jaeger or other OpenTracing implementations

Fission Metrics

Fission automatically tracks timing and success rate metrics for all
functions

Function run time, fission overheads, error codes

Fission has Prometheus integration for metrics collection

+ You can build dashboards with Grafana, and alerts with Prometheus

Alertmanager

Cost Optimization

Balance performance and cost in the cloud and the datacenter

Cost Optimization

+ Most systems have cost/performance tradeoffs

- Public cloud serverless lets you pay for what you use, though the

tradeoffs get worse as usage gets higher

- In the on-premise you still care about utilization — resources used should

be proportional to actual demand, so they are available for other services
that may need them

Cost Optimization

- Big topic!

- On public cloud, clever use of Reserved Instances, cheaper Spot/Pre-
emptible Instances can yield significant savings

- Caretul configuration of resource limits for applications in a cluster

- On all infrastructures, autoscaling can make clusters more efficient —
growing resource utilization only when there is demand and shrinking it

otherwise

The Cold-Start Problem

- |deally, services with zero usage should be free

+ But services should be able to start quickly when there is demand for

them

- This is the cold-start problem: how do we ensure low idle costs while

simultaneously providing low latency?

Cold Starts in Fission

- Built-in cold-start optimization: use a pool of pre-warmed containers

- Pool size can be configured; the cost of the pool is amortized over all

functions in the cluster

- When they are invoked, functions are loaded into a container from the

pool

- Functions can also be configured not to use a pool at all, slowing them

down but further reducing cost

Cost Optimizations in Fission

+ Function execution is tunable: choose a point on the cost/performance
tradeoffs

- Not subject to lambda pricing model — can be as cheap as the cheapest
VM instance (RI, spot etc.)

- On-premise usage can be a cost savings, especially if you have existing
infra

Cost Optimizations in Fission

- Configure CPU and memory resource usage limits for functions

- Configure autoscaling parameters: min and max scale, target CPU

utilization

Demo!

+ Hello, world

- Declarative config

. Live reloads

- Record-replay

- Canary deployments — we’ll also metrics in prometheus

Get Started with Fission

Get Started with Fission

Environment

Get Started with Fission

./

Trigger

Environment

Get Started with Fission

Trigger

HTTP, NATS, Kafka,

Azure Storage Queues,

Kubernetes Watches,
Timers, ...

Environment

NodedS, Python, Go, Ruby, C#, PHP, Bash, Perl, Java

Get Started with Fission

. Visit: fission.io

- github.com/fission/fission — see milestones for upcoming features

. Install latest release 0.10: docs.fission.io/latest/installation/

- Canaries comingin Fission 0.11

- Slack: slack.fission.io — Ask us anything!

. Twitter: @fissionio

http://fission.io
http://github.com/fission/fission
https://docs.fission.io/latest/installation/
http://slack.fission.io

