
The Seven-Step Recipe
for Continuous Integration
Using OpenStack

An exploration of how to use the Platform9 SaaS product to successfully implement a
CI/CD development-to-deployment workflow, including the benefits of OpenStack,
automation requirements, detailed test and deployment procedure, and useful
OpenStack features.

Table of Contents
Executive Summary... 1

Why Completely Automate Your CI/CD Workflow? 2

Benefits of Using OpenStack for CI/CD Automation 2

Efficient Resource Usage ... 2

End-to-End Automation ... 2

Better Visibility and Sharing .. 2

Requirements... 3

OpenStack Private Cloud ... 3

Vanilla VM Images.. 3

CI/CD Workflow Automation Tool .. 3

Version Control System.. 3

The Recipe .. 4

Step One: Push Component Changes.. 4

Step Two: Build the Component .. 5

Step Three: Build the Image.. 5

Step Four: Deploy Instances ... 5

Step Five: Perform Integration Testing 6

Step Six: Tag the Image .. 6

Step Seven: Cleanup Resources... 6

APPENDIX: Useful OpenStack Features 6

For Further Information ... 7
Ready to learn more? Call us at +1-650-898-7369 or email sup
Executive Summary
This white paper discusses the seven steps
required for successfully implementing a fully
automated Continuous Integration/Continuous
Delivery (CI/CD) development-to-deployment
workflow from a SaaS (Software as a Service)
perspective using the Platform9 product and
deployment process as the example. The specific
topics covered include:

• Why a completely automated CI/CD workflow
can benefit your product development and
deployment.

• How using OpenStack can benefit CI/CD
workflow automation.

• Requirements for automating your CI/CD
workflow.

• The detailed seven-step recipe used by
Platform9 to test and deploy our product.

• Some OpenStack features that we have found
very useful at Platform9.
1port@platform9.com.

mailto:support@platform9.com

Why Completely Automate
Your CI/CD Workflow?
A SaaS company must be able to rapidly ship code without
sacrificing quality in order to survive and thrive. Providing a
100% automated CI/CD build infrastructure accelerates
development by allowing the developers to check in code
and immediately move on to other tasks while the system
automatically performs the appropriate unit, integration,
and other tests. If the tests pass, then the system
automatically checks the new code in to the main source
code branch. If there is a problem, then the system
notifies the developer. Automating tests has the added
benefit of encouraging developers to write more tests,
thereby driving a culture of test-driven development.

Increasing developer efficiency allows your organization to
ship code more rapidly. Pairing this efficiency with
automated testing ensures that faster development does
not mean sacrificing high quality.

Benefits of Using OpenStack
for CI/CD Automation
OpenStack is an open source project that offers a number
of key benefits for running a private cloud as efficiently as
a public cloud. It is becoming the standard for current and
future private clouds, thanks to a thriving community and
support from key organizations in the enterprise
infrastructure space such as Cisco, VMware, Rackspace,
EMC, and IBM.

Some of the key benefits of using OpenStack to automate
a CI/CD workflow include:

• Efficient resource usage

• End-to-end automation

• Better visibility and sharing

Let’s look at each of these benefits in more detail.

EFFICIENT RESOURCE USAGE

OpenStack includes several features for getting the most
from your available infrastructure resources. For example,
the auto-placement engine matches instances (virtual
machines) with the appropriate resources while honoring
administrator-defined policies. You can also set over-
subscription levels for CPUs, RAM, and storage.

END-TO-END AUTOMATION

OpenStack also contains a number of features that can
help create an automated CI/CD workflow, such as:

• Including a large catalog of standard virtual machine
images.

• Allowing a developer to upload SSH keys that can be
injected into virtual machine images during
deployment.

• Tagging virtual machines with simple key value pair
tags in a manner similar to that used by Amazon EC2.
This can be a very powerful way to annotate virtual
machines with appropriate information that is
consumed at run time.

• Supporting cloud-init based customization allows
scripts (Chef, Puppet, Ansible, etc.) to be injected into a
virtual machine once it has powered on and acquired
an IP address. This high level of customization support
is key for automating CI/CD workflows.

• Taking a snapshot of a virtual machine to create a new
image at any time.

All of these features are available via simple and intuitive
RESTful APIs, script wrappers, and the Command Line
Interface (CLI).

BETTER VISIBILITY AND SHARING

OpenStack includes a number of dashboards and reports
that give your Developer Operations (DevOps) team real
2Ready to learn more? Call us at +1-650-898-7369 or email support@platform9.com.

mailto:support@platform9.com

time visibility into your infrastructure, builds, and current
workload. An administrator who spots an error can quickly
pause and snapshot the affected resource(s) and then
share those snapshots and associated logs with
developers for faster troubleshooting and debugging.

Note: Platform9 typically recommends running your
automated CI/CD workflow in a dedicated tenant to facilitate
resource allocation and enhance security while improving
visibility.

Requirements
Your infrastructure must meet the following requirements
in order to support a fully automated CI/CD workflow with
OpenStack:

• OpenStack private cloud

• Vanilla virtual machine images

• CI/CD workflow automation tool

• Version control system

Let’s look at each of these requirements in more detail.

OPENSTACK PRIVATE CLOUD

Your organization must have an OpenStack private cloud
with sufficient CPU, RAM, and storage resources to
support your automated CI/CD workflow. You can do this
in one of three ways:

• Download and deploy OpenStack to your own
environment on your own.

• Pay a provider to deploy both the hardware and the
OpenStack environment.

• Partner with an OpenStack vendor such as Platform9,
thereby making it easy to go from bare metal to a fully
operational OpenStack environment.

VANILLA VM IMAGES

Your environment must include a catalog with an
assortment of vanilla virtual machine images that
completely encompasses all of the operating system
versions used by your automated CI/CD workflow.
Platform9 recommends starting with minimal operating
system images that include cloud-init and then
customizing those images dynamically as part of your
automated CI/CD workflow.

Note: Platform9 includes these images out of the box along
with our managed OpenStack deployment.

CI/CD WORKFLOW AUTOMATION TOOL

Your environment must include a CI/CD workflow
automation tool. Jenkins and TeamCity two of the most
widely used tools in this category.

• Jenkins has been one of the most popular tools for
years because it is both free and open source. The
primary drawback is that it requires a number of plug-
ins for every function that you want to run with it—and
the burden is often on you to find and install the
correct plug-ins.

• TeamCity includes a number of useful functions out of
the box, which allow you to get up and running more
quickly. The primary drawback is that it is a paid,
proprietary product. Platform9 currently uses
TeamCity.

VERSION CONTROL SYSTEM

Your organization must have a good version control
system such as Perforce, Subversion, or Git. Platform9
prefers Git because it is very efficient, creates branches
quickly, uses a distributed peer-to-peer model, and
includes a full history tree that is available even when you
are offline. The primary drawback is that it tends to be a
complex system with a steep initial learning curve.
Ready to learn more? Call us at +1-650-898-7369 or email support@platform9.com. 3

mailto:support@platform9.com

Figure 1: Platform9 automatically installs the appropriate agents and packages on network nodes.

The Recipe
We will now explore the seven-step recipe in more depth
using the Platform9 product itself as our example.
Platform9 is an OpenStack private cloud that we offer to
our customers through a SaaS model. During
implementation:

1. Platform9 deploys OpenStack Controllers that contain
a number of software components.

2. The customer selects her or his desired hardware
nodes and then deploys the Platform9 agent on each
selected node by downloading it from her or his
Controllers.

3. The customer specifies a role for each node (such as
Compute, Block Storage, or Network).

4. The Platform9 OpenStack Controllers deploy the
correct OpenStack agent to each node (such as Nova-
compute, Cinder-volume, or Neutron agents) and then
establishes communications between those agents
and their management components on the
Controllers.

All software required for a Platform9 deployment comes
from the Controller nodes where they are packaged as an
assortment of self-contained, single-purpose artifacts that
are built from individual components. So… How do we use
the seven-step recipe to build our product from raw
components to the final image?

STEP ONE: PUSH COMPONENT CHANGES

The seven-step process starts with the individual
components that make up our product. Platform9 uses a
dedicated Git repository for each component, and each

OpenStack Controller
Nova-compute
Nova-api
Nova-conductor
Nova-scheduler

Platform9 services
Platform9 agent

Cinder-volume
Cinder-api
Cinder-scheduler

Neutron-agents
Neutron-server

Glance-api
Glance-registry

Keystone

Compute Nodes

Block Storage Node

Network Node

internet

customer intranet

OpenStack Controller
Nova-api
Nova-conductor
Nova-scheduler

Platform9 services

Cinder-api
Cinder-scheduler

Neutron-server

Glance-api
Glance-registry

Keystone

Compute Nodes

Block Storage Node

Network Node

internet

customer intranet

Platform9 agent

Platform9 agent

Platform9 agent

Nova-compute

Cinder-volume

Neutron-agents

Before Installation After Installation
Ready to learn more? Call us at +1-650-898-7369 or email support@platform9.com. 4

mailto:support@platform9.com

repository contains its own build scripts and unit tests.
Our developers commit all changes to the automerge
branch in the repository.

STEP TWO: BUILD THE COMPONENT

The automated CI/CD workflow takes over as soon as the
developer commits the new code. TeamCity monitors the
automerge branch and then performs the following tasks
when it detects changes:

1. Checks out the code.

2. Builds the component.

3. Runs unit tests.

If the unit tests pass, then TeamCity moves on by:

1. Archiving the prior artifacts.

2. Marking the build as successful.

3. Merging the changes to the master branch and
proceeding to build the Platform9 product.

STEP THREE: BUILD THE IMAGE

TeamCity checks for new component builds every hour,
which allows rapid code deployment without wasting
system resources. A change to one or more component(s)
triggers TeamCity to create a new build of the overall
product that will ultimately produce a cloud image by:

1. Checking out both the integration repository that
represents the entire product and all dependent
artifacts from all dependent components. TeamCity
includes robust support for dependency trees.

2. Running the integration scripts stored in the
integration repository. These scripts interact with our
OpenStack private cloud using a variety of methods
such as:

- Using the robust CLI tools that offer “quick and
dirty” OpenStack automation, such as checking
build status and then making a decision based on
that status.

- Invoking HTTP requests.

- Using a wrapper such as a Python or client library.
We use Python for advanced tasks or when
working with code that will be edited by multiple
developers.

3. Creating a bare temporary instance using OpenStack
images. Platform9 leverages the OpenStack image
catalog to store some standard operating system
images, such as Ubuntu or CentOS. The Platform9
Controllers are currently based on CentOS.

4. Using Ansible to install an artifact of the Platform9
product onto the instance and update the operating
system with all applicable security patches.

Note: You can use other configuration management tools
such as Chef, Puppet, or custom Bash scripts.

5. If the installation is successful, TeamCity shuts down
the instance and uses the OpenStack snapshot
feature to create a cloud Deployment Unit (DU) image
from that instance.

STEP FOUR: DEPLOY INSTANCES

With any luck, the DU image created in Step Three will
ultimately become a useful “golden” image by passing the
integration tests that exercise the software contained
within that image. Each integration test requires a
dedicated isolated test environment that consists of a pod
(collection) of virtual machines that replicates a real-world
customer deployment of the Platform9 product. Each pod
includes dedicated OpenStack Controllers and additional
nodes, and the integration tests simulate installing the
Platform9 agents and services and then establishing
Ready to learn more? Call us at +1-650-898-7369 or email support@platform9.com. 5

mailto:support@platform9.com

communications, as described at the beginning of this
section.

STEP FIVE: PERFORM INTEGRATION TESTING

Platform9 performs an ever-increasing number of
integration tests to ensure the reliability of our product.
These tests exercise product features such as:

• Uploading images to the private cloud.

• Spawning instances.

• Connecting instances over a virtual network.

Here again, the fact that our product consists of an
OpenStack deployment allows us to leverage built-in
OpenStack automation, such as using RESTful APIs to
integrate with the cloud controller and the Fabric Python
tool to automate running SSH commands inside instances.

STEP SIX: TAG THE IMAGE

Completion of testing triggers a status determination for
the overall build. If all tests have passed, then the DU
image is tagged with a PASS flag. If one or more test(s) fail,
then the DU image is tagged with a FAIL flag.

STEP SEVEN: CLEANUP RESOURCES

The final step of the seven-step recipe is to clean up the
resources used by the build and integration tests. If all
tests have passed, then the instances are deleted. Any
failure preserves those instances and allows developers to
log in for troubleshooting and debugging.

The images themselves are retained for possible reuse,
but all images are subject to eventual pruning (deletion
after any applicable grace period). Using a private cloud as
the primary tool for automating your CI/CD workflow
creates a large number of objects such as instances and
temporary repository branches, and pruning keeps the
cloud from filling up with useless clutter. Platform9 uses a

scheduled TeamCity job to look for objects older than the
appropriate grace period, which is four hours for in-
stances or 12 hours for images. Any object exceeding its
grace period is deleted. We have some exceptions to this
policy, such as:

• Keeping the last known good build for future reuse.

• Preserving personal development environments
located on the private cloud.

• Objects tagged with a DON’T DELETE tag.

APPENDIX: Useful OpenStack
Features
Platform9 has found the following OpenStack features to
be particularly useful in our own automated CI/CD
workflow:

• Instance flavors: Platform9 spawns a large number
of instances during testing, and each test requires
various resources to run. Using flavors that define the
CPU, RAM, and storage resources to allocate to each
instance allows us to optimize our resource usage. We
have a large number of flavors that we can tune for
various workloads.

• Host aggregates: Host aggregates guide instance
placement, such as for nested virtualization
requirements. When deploying an instance,
OpenStack uses the flavor parameters to determine
the best host to use for satisfying the request, taking
resource usage statistics into account for load
balancing. This suffices for most cases, but some
instances require particular hosts. For example, when
it is required to run an instance inside another
instance (nested virtualization), we use host
aggregates and flavors with the nested-virt=true
flag to specify the suitable hosts.
Ready to learn more? Call us at +1-650-898-7369 or email support@platform9.com. 6

mailto:support@platform9.com

Sample Environment
The Platform9 build/test environment consists of:

• HP Proliant DL 385 servers with 12-core AMD Opteron
CPUs, 100GB DDR3 SDRAM, and 500GB storage.

• 100GHz total computing speed, 500GB total RAM, and
2.5TB total storage

• Typical CPU over-allocation is about 5x-6x, with up to
16x supported.

• Support for 1.5x RAM over-allocation (rarely used, to
avoid slowing non-test workloads.) This is one reason
why we recommend running your automated CI/CD
workflow in a separate tenant, if possible.

• We spin up and tear down 1,000+ instances every day.

• Common instance flavors include:

- 1 vCPU, 1GB RAM, and 10GB storage

- 1 vCPU, 4GB RAM, and 8GB storage

About Platform9
Platform9's OpenStack-powered service transforms an
organization's existing servers into an AWS-like agile and
efficient self-service private cloud at any scale within
minutes while leveraging the latest open source
innovations. Platform9 Managed OpenStack is the first
100% cloud-managed platform for KVM, VMware vSphere,
and Docker. Founded in 2013 by a team of early VMware
engineers, Platform9 is backed by Redpoint Ventures and
is headquartered in Sunnyvale, CA.

© 2015 Platform9 Systems, Inc. All rights reserved. Platform9 and the Pla
registered trademarks of Platform9 Systems, Inc. All company and produ
trademarks of the respective owners with which they are associated.
• Tagging: This allows us to build metadata for images,
such as indicating a successful build or protecting a
resource from pruning. We can look up objects based
on their tags.

For Further Information
This white paper described how Platform9 uses our
internal OpenStack private cloud to automate our CI/CD
workflow, thereby ensuring both rapid development and
high product quality. If you would like more information or
to schedule a demonstration, please contact us at:

• Email: support@platform9.com

• Phone: +1-650-898-7369
7

tform9 logo are trademarks and/or
ct names are trade-marks or registered

Twitter

LinkedIn

Facebook

YouTube

To learn more about Platform9, visit www.platform9.com.

SlideShare

Blog

http://blog.platform9.com
https://www.facebook.com/platform9sys
https://www.linkedin.com/company/platform9-systems
http://www.slideshare.net/Platform9
https://www.youtube.com/user/platform9sys
https://twitter.com/Platform9Sys
mailto:support@platform9.com
mailto:support@platform9.com
mailto:support@platform9.com
support-at-platform9-dot-com
support@platform9.com
mailto:support@platform9.com
mailto:support@platform9.com
http://www.platform9.com
http://www.platform9.com
mailto:support@platform9.com

	The Seven-Step Recipe for Continuous Integration Using OpenStack
	Table of Contents
	Executive Summary

	Why Completely Automate Your CI/CD Workflow?
	Benefits of Using OpenStack for CI/CD Automation
	EFFICIENT RESOURCE USAGE
	END-TO-END AUTOMATION
	BETTER VISIBILITY AND SHARING

	Requirements
	OPENSTACK PRIVATE CLOUD
	VANILLA VM IMAGES
	CI/CD WORKFLOW AUTOMATION TOOL
	VERSION CONTROL SYSTEM
	Figure 1: Platform9 automatically installs the appropriate agents and packages on network nodes.

	The Recipe
	1. Platform9 deploys OpenStack Controllers that contain a number of software components.
	2. The customer selects her or his desired hardware nodes and then deploys the Platform9 agent on each selected node by downloading it from her or his Controllers.
	3. The customer specifies a role for each node (such as Compute, Block Storage, or Network).
	4. The Platform9 OpenStack Controllers deploy the correct OpenStack agent to each node (such as Nova- compute, Cinder-volume, or Neutron agents) and then establishes communications between those agents and their management components on the Controllers.
	STEP ONE: PUSH COMPONENT CHANGES
	STEP TWO: BUILD THE COMPONENT
	1. Checks out the code.
	2. Builds the component.
	3. Runs unit tests.
	1. Archiving the prior artifacts.
	2. Marking the build as successful.
	3. Merging the changes to the master branch and proceeding to build the Platform9 product.

	STEP THREE: BUILD THE IMAGE
	1. Checking out both the integration repository that represents the entire product and all dependent artifacts from all dependent components. TeamCity includes robust support for dependency trees.
	2. Running the integration scripts stored in the integration repository. These scripts interact with our OpenStack private cloud using a variety of methods such as:
	3. Creating a bare temporary instance using OpenStack images. Platform9 leverages the OpenStack image catalog to store some standard operating system images, such as Ubuntu or CentOS. The Platform9 Controllers are currently based on CentOS.
	4. Using Ansible to install an artifact of the Platform9 product onto the instance and update the operating system with all applicable security patches.
	5. If the installation is successful, TeamCity shuts down the instance and uses the OpenStack snapshot feature to create a cloud Deployment Unit (DU) image from that instance.

	STEP FOUR: DEPLOY INSTANCES
	STEP FIVE: PERFORM INTEGRATION TESTING
	STEP SIX: TAG THE IMAGE
	STEP SEVEN: CLEANUP RESOURCES

	APPENDIX: Useful OpenStack Features
	For Further Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

