
eBook

Container Management:
Kubernetes vs Docker Swarm,

Mesos + Marathon, Amazon ECS

In the past, it was common for various components of an application to be tightly coupled. Consequently, developers could
have spent hours rebuilding monolithic applications, even for minor changes. Recently, however, many technology professionals
have begun to see the advantage of using a microservices architecture, wherein the application comprises of loosely coupled
components, such as load balancers, caching proxies, message brokers, web servers, application services, and databases.
The use of microservices allows developers to quickly create applications. In addition, this architecture saves a tremendous
amount of resources in scaling applications, since each component can be scaled separately.

Containers make it easy to deploy and run applications using the microservices architecture. They are lighter-weight compared
to VMs and make more ef�cient use of the underlying infrastructure. Containers are meant to make it easy to scale applications,
meet �uctuating demands, and move apps seamlessly between different environments or clouds. While the container runtime
APIs meet the needs of managing one container on one host, they are not suited to manage complex environments consisting
of many containers and hosts. Container orchestration tools provide this management layer.

Container orchestration tools can treat an entire cluster as a single entity for deployment and management. These tools can
provide placement, scheduling, deployment, updates, health monitoring, scaling and failover functionality.

What is Container Orchestration?

Here are some of the capabilities that a modern container orchestration platform will typically provide:

Container orchestration tools can provision or schedule containers within the cluster and launch them. These tools can
determine the right placement for the containers by selecting an appropriate host based on the speci�ed constraints such
as resource requirements, location af�nity etc. The underlying goal is to increase utilization of the available resources.
Most tools will be agnostic to the underlying infrastructure provider and, in theory, should be able to move containers
across environments and clouds.

What Can Container Orchestration Tools Do?

Provisioning

Container orchestration tools will track and monitor the health of the containers and hosts in the cluster. If a container
crashes, a new one can be spun up quickly. If a host fails, the tool will restart the failed containers on another host. It will also
run speci�ed health checks at the appropriate frequency and update the list of available nodes based on the results. In short,
the tool will ensure that the current state of the cluster matches the con�guration speci�ed.

Monitoring

Since containers encourage a microservices based architecture, service discovery becomes a critical function and is provided
in different ways by container orchestration platforms e.g. DNS or proxy-based etc. For example, a web application front-end
dynamically discovering another microservice or a database.

Service Discovery

Some orchestration tools can perform ‘rolling upgrades’ of the application where a new version is applied incrementally
across the cluster. Traf�c is routed appropriately as containers go down temporarily to receive the update. A rolling update
guarantees a minimum number of “ready” containers at any point, so that all old containers are not replaced if there aren’t
enough healthy new containers to replace them. If, however, the new version doesn’t perform as expected then the
orchestration tool may also be able to rollback the applied change.

Rolling Upgrades and Rollback

Container orchestration tools can load the application blueprint from a schema de�ned in YAML or JSON. De�ning the
blueprint in this manner makes it easy for DevOps teams to edit, share and version the con�gurations and provide repeatable
deployments across development, testing and production.

Con�guration-as-text

Kubernetes

Container orchestration tools provide a way to de�ne policies for host placement, security, performance and high availability.
When con�gured correctly, container orchestration platforms can enable organizations to deploy and operate containerized
application workloads in a secure, reliable and scalable way. For example, an application can be scaled up automatically based
on CPU usage of the containers.

Policies for Placement, Scalability etc.

Container orchestration tools should provide mechanisms for administrators to deploy, con�gure and setup. An extensible
architecture will connect to external systems such as local or cloud storage, networking systems etc. They should connect to
existing IT tools for SSO, RBAC etc.

The following sections will introduce Kubernetes, Docker Swarm, Mesos + Marathon, Mesosphere DCOS, and Amazon EC2
Container Service including a comparison of each with Kubernetes.

According to the Kubernetes website, “Kubernetes is an open-source system for automating deployment, scaling, and
management of containerized applications.” Kubernetes was built by Google based on their experience running containers
in production using an internal cluster management system called Borg (sometimes referred to as Omega). The architecture
for Kubernetes, which relies on this experience, is shown below:

Administration

As you can see from the �gure above, there are a number of components associated with a Kubernetes cluster.
The master node places container workloads in user pods on worker nodes or itself. The other components include:

https://kubernetes.io/
http://blog.kubernetes.io/2015/04/borg-predecessor-to-kubernetes.html

Docker Swarm
Docker Engine v1.12.0 and later allow developers to deploy containers in Swarm mode. A Swarm cluster consists of Docker
Engine deployed on multiple nodes. Manager nodes perform orchestration and cluster management. Worker nodes receive
and execute tasks from the manager nodes.

A service, which can be speci�ed declaratively, consists of tasks that can be run on Swarm nodes. Services can be replicated
to run on multiple nodes. In the replicated services model, ingress load balancing and internal DNS can be used to provide
highly available service endpoints. (Source: Docker Docs: Swarm mode)

The following list provides some other common terms associated with Kubernetes:

etcd: This component stores con�guration data which can be accessed by the Kubernetes master’s API Server
by simple HTTP or JSON API.

API Server: This component is the management hub for the Kubernetes master node. It facilitates communication
between the various components, thereby maintaining cluster health.

Controller Manager: This component ensures that the clusters’ desired state matches the current state by scaling
workloads up and down.

Scheduler: This component places the workload on the appropriate node.

Pods: Kubernetes deploys and schedules containers in groups called pods. Containers in a pod run on the same node
aand share resources such as �lesystems, kernel namespaces, and an IP address.

Deployments: These building blocks can be used to create and manage a group of pods. Deployments can be used
with a service tier for scaling horizontally or ensuring availability.

Services: These are endpoints that can be addressed by name and can be connected to pods using label selectors.
The service will automatically round-robin requests between pods. Kubernetes will set up a DNS server for the cluster
that watches for new services and allows them to be addressed by name. Services are the “external face” of your
container workloads.

Labels: These are key-value pairs attached to objects. They can be used to search and update multiple objects
as a single set.

Kubelet: This component receives pod speci�cations from the API Server and manages pods running in the host.

https://docs.docker.com/engine/swarm/key-concepts/

As can be seen from the �gure above, the Docker Swarm architecture consists of managers and workers. The user can
declaratively specify the desired state of various services to run in the Swarm cluster using YAML �les. Here are some common
terms associated with Docker Swarm:

Node: A node is an instance of a Swarm. Nodes can be distributed on-premises or in public clouds.

docker service create --replicas 2 --name mynginx nginx

Task: A task is an atomic unit of a Service scheduled on a worker node. In the example above, two tasks would be
scheduled by a master node on two worker nodes (assuming they are not scheduled on the Master itself). The two tasks
will run independently of each other.

Swarm: A cluster of nodes (or Docker Engines). In Swarm mode, you orchestrate services, instead of running
container commands.

Manager Nodes: These nodes receive service de�nitions from the user, and dispatch work to worker nodes.
Manager nodes can also perform the duties of worker nodes.

Worker Nodes: These nodes collect and run tasks from manager nodes.

Service: A service speci�es the container image and the number of replicas. Here is an example of a service
command which will be scheduled on 2 available nodes:

Mesos is a distributed kernel that aims to provide dynamic allocation of resources in your datacenter. Imagine that you
manage the IT department of a mid-size business. You need to have workloads running on 100 nodes during the day but
on 25 after hours. Mesos can redistribute workloads so that the other 75 nodes can be powered-off when they are not used.
Mesos can also provide resource sharing. In the event that one of your nodes fails, workloads can be distributed among
other nodes.

Mesos comes with a number of frameworks, application stacks that use its resource sharing capabilities. Each framework
consists of a scheduler and a executor. Marathon is a framework (or meta framework) that can launch applications and other
frameworks. Marathon can also serve as a container orchestration platform which can provide scaling and self-healing for
containerized workloads. The �gure below shows the architecture of Mesos + Marathon.

There are a number of different components in Mesos and Marathon. The following list provides some common terms:

Mesos + Marathon

Mesos Master: This type of node enables the sharing of resources across frameworks such as Marathon for container
orchestration, Spark for large-scale data processing, and Cassandra for NoSQL databases.

Mesos Slave: This type of node runs agents that report available resources to the master.

Framework: A framework registers with the Mesos master so that the master can be offered tasks to run on slave nodes.

Zookeeper: This component provides a highly available database that can the cluster can keep state, i.e. the active master
at any given time.

Marathon Scheduler: This component receives offers from the Mesos master. Offers from the Mesos master list slave nodes’
available CPU and memory.

Docker Executor: This component receives tasks from the Marathon scheduler and launches containers on slave nodes.

http://mesos.apache.org/
https://mesosphere.github.io/marathon/

Mesosphere Enterprise DC/OS leverages the Mesos distributed systems kernel and builds on it with container and big data
management, providing installation, user interfaces, management and monitoring tools, and other features. The diagram
below shows a high-level architecture of DCOS.

As shown above, DCOS is comprised of package management, container orchestration (derived from Marathon),
cluster management (derived from Mesos), and other components. Further details on Mesosphere DCOS can be found
in DCOS documentation.

Mesosphere DCOS

Amazon ECS is the Docker-compatible container orchestration solution from Amazon Web Services. It allows you to run
containerized applications on EC2 instances and scale both of them. The following diagram shows the high-level
architecture of ECS.

Amazon ECS

Source: DCOS Documentation – Architecture

https://mesosphere.com/
https://docs.mesosphere.com/1.9/overview/architecture/
https://docs.mesosphere.com/

As shown above, ECS Clusters consist of tasks which run in Docker containers, and container instances, among many other
components. Here are some AWS services commonly used with ECS:

Elastic Load Balancer: This component can route traf�c to containers. Two kinds of load balancing are available:
application and classic.

Elastic Block Store: This service provides persistent block storage for ECS tasks (workloads running in containers).

CloudWatch: This service collects metrics from ECS. Based on CloudWatch metrics, ECS services can be scaled up or down.

Virtual Private Cloud: An ECS cluster runs within a VPC. A VPC can have one or more subnets.

CloudTrail: This service can log ECS API calls. Details captured include type of request made to Amazon ECS,
source IP address, user details, etc.

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_data_volumes.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-metrics.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/get-set-up-for-amazon-ecs.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/logging-using-cloudtrail.html

State Engine: A container environment can consist of many EC2 container instances and containers. With hundreds
or thousands of containers, it is necessary to keep track of the availability of instances to serve new requests based on CPU,
memory, load balancing, and other characteristics. The state engine is designed to keep track of available hosts, running
containers, and other functions of a cluster manager.

Schedulers: These components use information from the state engine to place containers in the optimal EC2 container
instances. The batch job scheduler is used for tasks that run for a short period of time. The service scheduler is used for long
running apps. It can automatically schedule new tasks to an ELB.

Cluster: This is a logical placement boundary for a set of EC2 container instances within an AWS region. A cluster can span
multiple availability zones (AZs), and can be scaled up/down dynamically. A dev/test environment may have 2 clusters:
1 each for production and test.

Tasks: A task is a unit of work. Task de�nitions, written in JSON, specify containers that should be co-located (on an EC2
container instance). Though tasks usually consist of a single container, they can also contain multiple containers.

Services: This component speci�es how many tasks should be running across a given cluster. You can interact with services
using their API, and use the service scheduler for task placement.

ECS, which is provided by Amazon as a service, is composed of multiple built-in components which enable administrators
to create clusters, tasks and services:

Note that ECS only manages ECS container workloads – resulting in vendor lock-in. There’s no support to run containers
on infrastructure outside of EC2, including physical infrastructure or other clouds such as Google Cloud Platform and
Microsoft Azure. The advantage, of course, is the ability to work with all the other AWS services like Elastic Load Balancers,
CloudTrail, CloudWatch etc.

Further details about Amazon ECS can be found in AWS ECS Documentation.

https://aws.amazon.com/documentation/ecs/

Applications can be deployed using
a combination of pods, deployments,
and services. A pod is a group of co-
located containers and is the atomic
unit of a deployment. A deployment
can have replicas across multiple nodes.
A service is the “external face” of
container workloads and integrates
with DNS to round-robin incoming
requests. Load balancing of incoming
requests is supported.

Applications can be deployed as
services in a Swarm cluster. Multi-
container applications can speci�ed
using YAML �les. Docker Compose
can deploy the app. tasks (an instance
of a service running on a node) can be
distributed across datacenters using
labels. Multiple placement preferences
can be used to distribute tasks further,
for example, to a rack in a datacenter.

From the user’s perspective, an
application runs as tasks that are
scheduled by Marathon on nodes.
For Mesos, an application is a
framework, which can be Marathon,
Cassandra, Spark and others. Marathon
in-turn schedules containers as tasks
which are executed on slave nodes.
Marathon 1.4 introduces the concept
of pods (like Kubernetes), but this isn’t
part of the Marathon core.

Nodes can be tagged based on racks,
type of storage attached, etc. These
constraints can be used when
launching Docker containers.

Applications can be deployed as tasks,
which are Docker containers running on
EC2 instances (aka container instances).
Task de�nitions specify the container
image, CPU, memory and persistent
storage in a JSON template. Clusters
comprise of one or more tasks that use
these task de�nitions. Schedulers
automatically place containers across
compute nodes in a cluster, which can
also span multiple AZs. Services can be
created by specifying number of tasks
and an Elastic Load Balancer.

Each application tier is de�ned as a
pod and can be scaled when managed
by a deployment, which is speci�ed
declaratively, e.g., in YAML. The scaling
can be manual or automated. Pods are
most useful for running co-located and
co-administered helper applications,
like log and checkpoint backup agents,
proxies and adapters, though they can
also be used to run vertically integrated
application stacks such as LAMP
(Apache, MySQL, PHP) or ELK/Elastic
(Elasticsearch, Logstash, Kibana).

Services can be scaled using Docker
Compose YAML templates. Services
can be global or replicated. Global
services run on all nodes, replicated
services run replicas (tasks) of the
services across nodes. For example,
A MySQL service with 3 replicas will
run on a maximum of 3 nodes. Tasks
can be scaled up or down, and
deployed in parallel or in sequence.

Mesos CLI or UI can be used.
Docker containers can be launched
using JSON de�nitions that specify
the repository, resources, number of
instances, and command to execute.
Scaling-up can be done by using the
Marathon UI, and the Marathon
scheduler will distribute these
containers on slave nodes based on
speci�ed criteria. Autoscaling is
supported. Multi-tiered applications
can be deployed using application
groups.

Applications can be de�ned using task
de�nitions written in JSON. Tasks are
instantiations of task de�nitions and
can be scaled up or down manually.
The built-in scheduler will automatically
distribute tasks across ECS compute nodes.
For a vertically integrated stack, task
de�nitions can specify one tier which
exposes an http endpoint. This endpoint
can in-turn be used by another tier, or
exposed to the user.

Kubernetes vs Swarm vs Mesos vs ECS Comparison

Application Scalability Constructs

Application De�nition

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

http://mesos.apache.org/documentation/latest/frameworks/
https://dcos.io/docs/1.7/usage/tutorials/autoscaling/
https://mesosphere.github.io/marathon/docs/application-groups.html
https://mesosphere.github.io/marathon/docs/application-groups.html

Deployments allow pods to be
distributed among nodes to provide
HA, thereby tolerating infrastructure
or application failures. Load-balanced
services detect unhealthy pods and
remove them. High availability of
Kubernetes is supported. Multiple
master nodes and worker nodes can
be load balanced for requests from
kubectl and clients. etcd can be
clustered and API Servers can
be replicated.

Services can be replicated among
Swarm nodes. Swarm managers are
responsible for the entire cluster and
manage the resources of worker nodes.
Managers use ingress load balancing
to expose services externally.

Swarm managers use Raft Consensus
algorithm to ensure that they have
consistent state information. An odd
number of managers is recommended,
and a majority of managers must be
available for a functioning Swarm
cluster (2 of 3, 3 of 5, etc.).

Containers can be scheduled without
constraints on node placement, or each
container on a unique node (the number
of slave nodes should be at least equal
to the number of containers).

High availability for Mesos and Marathon
is supported using Zookeeper.
Zookeeper provides election of Mesos
and Marathon leaders and maintains
cluster state.

Schedulers place tasks, which are
comprised of 1 or more containers, on
EC2 container instances. Tasks can be
increased or decreased manually to scale.
Elastic Load Balancers can distribute traf�c
among healthy containers. ECS control
plane high availability is taken care of by
Amazon. Requests can be load-balanced
to multiple tasks using ELB.

High Availability

Pods are exposed through a service,
which can be used as a load-balancer
within the cluster. Typically, an ingress
resource is used for load balancing.

Swarm mode has a DNS component
that can be used to distribute
incoming requests to a service name.
Services can run on ports speci�ed by
the user or can be assigned
automatically.

Host ports can be mapped to multiple
container ports, serving as a front-end
for other applications or end users.

ELB provides a CNAME that can be used
within the cluster. This CNAME serves as
a front-facing resolvable FQDN for
multiple tasks. Two kinds of service load
balancers with ELB: application or classic.

Load Balancing

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-load-balancing.html

Auto-scaling using a simple number-
of-pods target is de�ned declaratively
using deployments. Auto-scaling using
resource metrics is also supported.
Resource metrics range from CPU
and memory utilization to requests
or packets-per-second, and even
custom metrics.

Not directly available. For each service,
you can declare the number of tasks
you want to run. When you manually
scale up or down, the Swarm manager
automatically adapts by adding or
removing tasks.

Marathon continuously monitors the
number of instances of a Docker
container that are running. If one of the
containers fail, Marathon reschedules
it on other slave nodes.

Auto-scaling using resource metrics is
available through community-supported
components only.

CloudWatch alarms can be used
to auto-scale ECS services up or down
based on CPU, memory, and custom
metrics.

Auto-scaling for the Application

A deployment supports both
“rolling-update” and “recreate”
strategies. Rolling updates can
specify maximum number of pods.

At rollout time, you can apply rolling
updates to services. The Swarm
manager lets you control the delay
between service deployment to
different sets of nodes, thereby
updating only 1 task at a time.

Rolling upgrades of applications are
supported using deployments. A failed
upgrade can be healed using an
updated deployment that rolls-back
the changes.

Rolling updates are supported using
“minimumHealthyPercent” and
“maximumPercent” parameters. The
same parameters can be adjusted to
do blue-green updates, which adds a
whole new batch of containers in
parallel with the existing set.

Rolling Application Upgrades and Rollback

Health checks are of two kinds:
liveness (is app responsive) and
readiness (is app responsive, but
busy preparing and not yet able
to serve).

Docker Swarm health checks are
limited to services. If a container backing
the service does not come up (running
state), a new container is kicked off.

Users can embed health check
functionality into their Docker images
using the HEALTHCHECK instruction.

Health checks can be speci�ed to be
run against the application’s tasks.
Health check requests are available
in a number of protocols, including
HTTP, TCP, and others.

ECS provides health checks using
CloudWatch.

Health Checks

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://dcos.io/docs/1.9/tutorials/autoscaling/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/#apply-rolling-updates-to-a-service
https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/#apply-rolling-updates-to-a-service
https://dcos.io/docs/1.9/deploying-services/deployments/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://forums.docker.com/t/how-does-the-health-check-work-in-a-swarm/22151
https://ryaneschinger.com/blog/using-docker-native-health-checks/
https://dcos.io/docs/1.9/deploying-services/creating-services/health-checks/#docs-article

Two storage APIs:

The �rst provides abstractions for
individual storage backends (e.g. NFS,
AWS EBS, Ceph, Flocker).

The second provides an abstraction for
a storage resource request (e.g. 8 Gb),
which can be ful�lled with different
storage backends. Kubernetes offers
several types of persistent volumes with
block or �le support. Examples include
iSCSI, NFS, FC, Amazon Web Services,
Google Cloud Platform, and Microsoft Azure.

The emptyDir volume is non-persistent
and can used to read and write �les
with a container.

Docker Engine and Swarm support
mounting volumes into a container.

Shared �lesystems, including NFS,
iSCSI, and �bre channel, can be
con�gured nodes. Plugin options
include Azure, Google Cloud Platform,
NetApp, Dell EMC, and others.

Local persistent volumes (beta) are
supported for stateful applications
such as MySQL. When needed, tasks
can be restarted on the same node
using the same volume.

The use of external storage, such as
Amazon EBS, is also in beta. At the
present time, applications that use
external volumes can only be scaled
to a single instance because a volume
can only attach to a single task
at a time.

Block storage support is limited to
Amazon Web Services. EBS volumes can
be speci�ed by using ECS task de�nitions
(JSON �les) and connected to container
instances. Task de�nitions have a
“containerDe�nitions” section which
can be used to enable “mountPoints.”

Multiple containers on a container
instance can be connected to an EBS
storage volume. (Reference: Amazon
Web Services Docs)

Storage

The networking model is a �at network,
enabling all pods to communicate with
one another. Network policies specify
how pods communicate with each
other. The �at network is typically
implemented as an overlay.

The model requires two CIDRs: one
from which pods get an IP address,
the other for services.

Node joining a Docker Swarm cluster
creates an overlay network for services
that span all of the hosts in the Swarm
and a host only Docker bridge network
for containers.

By default, nodes in the Swarm
cluster encrypt overlay control and
management traf�c between
themselves. Users can choose to
encrypt container data traf�c when
creating an overlay network by
themselves.

Networking can be con�gured in
host mode or bridge mode. In host
mode, the host ports are used by
containers. This can lead to port
con�icts on any given host. In bridge
mode, the container ports are bridged
to host ports using port mapping.
Host ports can be dynamically
assigned at time of deployment.

ECS is supported in a VPC, which can
include multiple subnets in multiple AZs.
Communication within a subnet cannot
be restricted using AWS tools.

Networking

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

http://kubernetes.io/docs/user-guide/volumes/
http://kubernetes.io/docs/user-guide/volumes/
https://docs.docker.com/engine/tutorials/dockervolumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
http://kubernetes.io/docs/user-guide/persistent-volumes/
https://mesosphere.github.io/marathon/docs/persistent-volumes.html
https://mesosphere.github.io/marathon/docs/external-volumes.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-ami-storage-config.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-ami-storage-config.html

Services can be found using
environment variables or DNS.

Kubelet adds a set of environment
variables when a pod is run. Kubelet
supports simple
“{SVCNAME_SERVICE_HOST}” and
“{SVCNAME_SERVICE_PORT}”
variables, as well as Docker links
compatible variables.

DNS Server is available as an addon.
For each Kubernetes service, the DNS
Server creates a set of DNS records.
With DNS enabled in the entire cluster,
pods will be able to use service names
that automatically resolve.

Swarm Manager node assigns each
service a unique DNS name and load
balances running containers.
Requests to services are load
balanced to the individual containers
via the DNS server embedded in
the Swarm.

Docker Swarm comes with multiple
discovery backends:

Services can be discovered via
“named VIPs,” which are DNS
records that are are associated with
IPs and ports.

Services are automatically assigned
DNS records by Mesos-DNS. An
optional named VIP can be created;
requests via the VIP are load-balanced.

Services can be found using an ELB and
a CNAME. A single ELB can be used per
service. Route53 private hosted zones
can be used to ensure that the ELB
CNAMEs are only resolvable within
your VPC.

Service Discovery

Docker Hub as a hosted discovery
service is intended to be used for
dev/test. Not recommended for
production.

A static �le or list of nodes can be
used as a discovery backend. The
�le must be stored on a host that is
accessible from the Swarm Manager.
You can also provide a node list as
an option when you start Swarm.

With the release of 1.6, Kubernetes
scales to 5,000-node clusters.
Multiple clusters can be used to
scale beyond this limit.

According to the Docker’s blog post
on scaling Swarm clusters, Docker
Swarm has been scaled and
performance tested up to 30,000
containers and 1,000 nodes with
1 Swarm manager.

Mesos’ 2 tier architecture (with
Marathon) makes is very scalable.
According to Digital Ocean, Mesos
and Marathon clusters have been
scaled to 10,000 nodes.

ECS has been scaled-up to over a 1000
container nodes without noticeable
performance degradation. (Deep Dive
on Microservices and Amazon ECS,
skip to 11:27)

Performance and Scalability

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

https://docs.docker.com/engine/swarm/networking/#use-dns-round-robin-for-a-service
https://docs.docker.com/engine/swarm/networking/#use-dns-round-robin-for-a-service
https://docs.docker.com/swarm/discovery/#docker-swarm-discovery
https://docs.docker.com/swarm/discovery/#docker-swarm-discovery
https://dcos.io/docs/1.8/usage/tutorials/dcos-101/service-discovery/
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
https://blog.docker.com/2015/11/scale-testing-docker-swarm-30000-containers/
https://www.digitalocean.com/community/tutorials/an-introduction-to-mesosphere
https://www.youtube.com/watch?v=QuYNxoqz0oY&t=1802s
https://www.youtube.com/watch?v=QuYNxoqz0oY&t=1802s
https://www.youtube.com/watch?v=QuYNxoqz0oY&t=1802s

Advantages/Disadvantages of Container Orchestration Solutions

Advantages

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

Simple deployment. Swarm mode
is included in Docker Engine.

Integrates with Docker Compose
and Docker CLI – native Docker
tools.

Many of the Docker CLI commands
will work with Swarm. Easier
learning curve.

Various storage options Plugins
include Azure, Google Cloud
Platform, NetApp, Dell EMC, etc.

Single vendor control may allow
for accountability with bug �xes
and better coordination with
feature development.

The 2-tier architecture allows for
deploying other frameworks
(workloads). Examples include
Spark, Chronos, and Redis.

Can overcome constraints of
Docker and Docker API.

Organizations have deployed
Mesos at massive scale greater
than 10,000 nodes. (Source:
Mesosphere blog)

ECS does not require installation
on servers. ECS CLI installation is
simple.

Based on experience from
operating scalable public clouds.

Single vendor control may allow for
accountability with bug �xes and
better coordination with feature
development.

Based on extensive experience
at Google.

Deployed at scale more often.
Backed by enterprise offerings
from both Google (GKE) and
RedHat (OpenShift).

Can overcome constraints of
Docker and Docker API.

Largest community among
container orchestration tools.
Over 50,000 commits and 1200
contributors.

Wide variety of storage options,
including on-premises SANs and
public clouds.

http://mesos.apache.org/documentation/latest/frameworks/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_CLI_installation.html
https://mesosphere.com/blog/2015/08/25/scaling-mesos-at-apple-bloomberg-netflix-and-more/

Does not have much experience
with production deployments at
scale.

Limited to the Docker API’s
capabilities.

Services have to be scaled manually.

Smaller community and project.
Over 3,000 commits and 160
contributors.

External storage on Mesos +
Marathon, including Amazon
EBS is in beta.

Mesosphere’s DCOS product is
the only commercial distribution
of Mesos.

Smaller community. Over 12,000
commits and 240 contributors.

Installation can be complex due
to the 2 tier architecture, Zookeeper
for cluster management, HA Proxy
for load balancing, etc.

Multiple sets of tools for
management: Mesos CLI, Mesos UI,
Marathon CLI, Marathon UI.

Vendor lock-in. Containers can only
be deployed on Amazon, and ECS
can only manage containers that it
has created.

External storage is limited to Amazon.

Validated within Amazon. ECS is not
publicly available for deployment
outside Amazon.

Much of ECS code is not publicly
available. Parts of ECS, including
Blox, a framework that helps build
custom schedulers, are open source.
200 commits and 15 contributors.

Do-it-yourself installation can be
complex. Further details on
deployment tools in Kubernetes
Deployment Guide.

Uses a separate set of tools
for management, including
kubectl CLI.

Lack of single vendor control
can complicate purchasing
decisions. Community includes
Google, Red Hat, and over 2000
authors. (Source: CNCF)

Disadvantages

Kubernetes Docker Swarm Mesos + Marathon Amazon ECS

https://platform9.com/resources/kubernetes-deployment-models/?utm_source=k8s_comparison_ebook
https://platform9.com/resources/kubernetes-deployment-models/?utm_source=k8s_comparison_ebook
https://mesosphere.github.io/marathon/docs/external-volumes.html
https://mesosphere.github.io/marathon/docs/external-volumes.html
https://mesosphere.com/
https://www.cncf.io/blog/2017/06/05/30-highest-velocity-open-source-projects/
https://github.com/blox/blox/tree/master/cluster-state-service

Much wider adoption by DevOps and containers communities

Backed by enterprise offerings such as Google Container Engine (GKE) and Red Hat OpenShift

Based on over a decade of experience at Google

Speed: Gain from rapid roll-out of enterprise Kubernetes. Our Sandbox takes seconds to setup, and production
installations usually take a few hours.

Simplicity: Organizations leveraging Platform9 Managed Kubernetes do not need to deploy, monitor, and manage highly
available Kubernetes, including etcd databases, API servers, kubelets, etc. Kubernetes version upgrades are performed
with zero downtime.

Scale: Customers can scale cost-effectively by provisioning containers on-premises and in public clouds, including
Amazon Web Services, Google Cloud Platform, and Microsoft Azure.

As you can see, Kubernetes has an overwhelming presence in online news and web searches. On other metrics, Kubernetes
has over 65% of mindshare on Github, and leads on number of publications, as measured by search results. Here are the top
three reasons why Kubernetes is the #1 container orchestration solution today:

However, Kubernetes has been known to be dif�cult to deploy and manage. Platform9’s Managed Kubernetes product can
�ll this gap by letting organizations focus on deploying microservices on Kubernetes, instead of deploying, operating, and
upgrading a highly available Kubernetes deployments themselves. Speci�cally, Platform9 Managed Kubernetes can provide
these bene�ts:

Take a guided tour of Platform9’s Managed Kubernetes using a free Sandbox. You can also learn more about various
deployment options for Kubernetes, including local installations, managed services, and public clouds, using
The Ultimate Guide to Deploy Kubernetes.

For information about our enterprise proof of concept program, please email us at info@platform9.com.

The chart below provides a summary of mindshare for Kubernetes, Docker Swarm, Mesos + Marathon, and Amazon ECS.

Conclusion

https://platform9.com/managed-kubernetes/?utm_source=k8s_comparison_ebook
https://platform9.com/sandbox/?utm_source=k8s_comparison_ebook
https://platform9.com/sandbox/?utm_source=k8s_comparison_ebook
https://platform9.com/resources/kubernetes-deployment-models/?utm_source=k8s_comparison_ebook
http://info@platform9.com

