
Kubernetes in Production: Operating etcd with
etcdadm

Daniel Lipovetsky 
Software Engineer, Platform9 Systems

April 16, 2019

1

https://github.com/dlipovetsky
https://platform9.com/


etcdadm
CLI to simplify etcd operation, including disaster recovery

Inspired by lessons learned running Kubernetes in production

An open-source, community project:
https://sigs.k8s.io/etcdadm

Easy to install
go get sigs.k8s.io/etcdadm

Binary releases coming soon

2

https://sigs.k8s.io/etcdadm


Lessons Learned in Production

Some definitions

Control plane
Group of stateless components

apiserver, controller-manager, scheduler

One stateful component
etcd

3



Lessons Learned in Production
1. API uptime is critical.

Without the API, the cluster is a zombie.

All CRD-based services need the API.

2. Many API outages are due to etcd failure.
Check component statuses, or apiserver log.

3. Complete etcd failure does happen.

4. Have a manual etcd recovery process.

5. Periodic etcd backups are important, but try to recover the latest state, if possible.

4



How to ensure API uptime
There are two strategies:

Tolerate partial failure.

Reduce recovery time.

You need both.

5



How to tolerate partial failure
Deploy multiple control plane replicas.

Easier

No performance penalty

Deploy multiple etcd members.
Harder

Performance penalty

6



How to reduce recovery time
Write a service to automate recovery.

More complex and less flexible

Depends on external APIs

Hard to debug and patch

Deja vu: You have to ensure it tolerates partial failure and have a plan to
recover from a complete failure.

Have a manual recovery process.
Can be made simple with tooling

Has no dependencies

Easy to debug and patch

7



etcdadm
Goals:

Make it easy to tolerate partial etcd failure

Make it easy to have a manual etcd recovery process

Work without dependencies on external services like DNS, or networked
storage

Compose well with other tools
Use kubeadm to deploy control plane replicas

Let's demo!
How to deploy a multi-member cluster

How to scale the cluster

How to recover from failure
8



How to deploy a multi-member cluster
Deploy all members atomically

Discovery service

DNS

Static

Deploy one member, then scale up

9



How to deploy a multi-member cluster
etcdadm is designed to deploy one member, then scale up

One mechanism to understand

No dependencies on DNS or discovery service

Easily understood failure

Must deploy members sequentially

10



How to deploy a multi-member cluster

Create the first member

172.0.0.1> etcdadm init 

Behind the scenes

1. Generates CA, server and client certificates

2. Writes configuration

3. Creates and starts systemd service

11



How to deploy a multi-member cluster

Scale up

1. Copy CA cert/key

172.0.0.1> rsync /etc/etcd/pki/ca.* 172.0.0.2:/etc/etcd/pki 

2. Join the cluster

172.0.0.2> etcdadm join https://172.0.0.2:2379 

Behind the scenes:

1. Adds member using etcd API

2. Discovers all members using etcd API

3. Writes configuration

4. Creates and starts systemd service 12



How to scale down
1. Leave the cluster

172.0.0.2> etcdadm reset 

Behind the scenes:

1. Discovers identity of local member

2. Removes member using etcd API

3. Stops and removes systemd service

4. Removes configuration and data

13



How to handle etcd failure

Some definitions

Minority failure: A partial failure where a majority of members are available
Examples: Planned maintenance, network partition, hard disk failure

Majority failure: A partial (or complete) failure where a majority of members are not
available

Examples: Data center outage, networked storage failure

14



How to prepare for a planned minority failure
First, consider how many failures your cluster can tolerate. 
Then, choose how to prepare:

Do nothing.
High risk.

Migrate the member.
A special procedure.

Less data to catch up on after migrating.

Replace the member.
Reuses the scaling procedure: Scale up, then down.

More data to catch up on after scaling up.

15

https://github.com/etcd-io/etcd/blob/release-3.3/Documentation/v2/admin_guide.md#member-migration


How to prepare for a planned minority failure
Replace the member prior to maintenance; etcdadm makes this easy.

1. Copy CA cert/key

172.0.0.2> rsync /etc/etcd/pki/ca.* 172.0.0.3:/etc/etcd/pki 

2. Remove the member

172.0.0.2> etcdadm reset 

3. Add its replacement

172.0.0.3> etcdadm join https://172.0.0.1:2379 

16



How to recover from an unplanned minority failure
If the data is on disk and the member is reachable:

Tail the etcd log.

Check for a changed IP. If the IP changed, update the member's peer and client
URLs. Then start the etcd service.

Check for insufficient disk space df -h /var/lib/etcd

Something else? See this great KubeCon talk on debugging etcd.

17

https://kccna18.sched.com/event/GrYJ/debugging-etcd-joe-betz-jingyi-hu-google


How to recover from an unplanned minority failure
If the data is not on disk, the member is unreachable, or you don't have time to
investigate:

1. Identify the failed member.

172.0.0.3> etcdctl.sh member list 
7675368186969f2a, started, member1, https://172.0.0.1:2380, https://172.0.0.1:2379 
7a085789484825b5, started, member2, https://172.0.0.2:2380, https://172.0.0.2:2379 
ffe8a15189b30b53, started, member3, https://172.0.0.3:2380, https://172.0.0.3:2379 

2. Remove the member.

172.0.0.3> etcdctl.sh member remove 7a085789484825b5 

3. Add its replacement

18



How to recover from an unplanned majority failure
Fetch a backed-up snapshot, or take a snapshot of some available member.

etcdctl.sh snapshot save /tmp/etcd.snapshot 

Create a new one-member cluster from a snapshot.

etcdadm init --snapshot /tmp/etcd.snapshot 

Behind the scenes

1. Generates CA, server and client certificates

2. Initializes data directory from snapshot

3. Writes configuration

4. Creates and starts systemd service

Finally, scale up. 19



2019 Roadmap
Implement automation that invokes the etcdadm CLI

Implement periodic backups

Improve upgrade support

What feature would you like to see? File an issue in github.com/kubernetes-
sigs/etcdadm/issues

Find us in #etcdadm in kubernetes slack

20

http://github.com/kubernetes-sigs/etcdadm/issues
https://kubernetes.slack.com/


Thank you!
Thanks to everyone at Platform9 Systems, the Cluster Lifecycle Special Interest Group,
and the authors of etcd and kubeadm.

21

https://platform9.com/
https://github.com/kubernetes/community/tree/master/sig-cluster-lifecycle
https://github.com/etcd-io/etcd/
https://github.com/kubernetes/kubeadm


Q&A

22


