
233
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

WHAT IS KUBERNETES?
Kubernetes is an open source container orchestration system. It
manages containerized applications across multiple hosts for
deploying, monitoring, and scaling containers. Originally created
by Google, in March of 2016 it was donated to the Cloud Native
Computing Foundation (CNCF).

Kubernetes, or “k8s” or “kube” for short, allows the user to
declare the desired state of an application using concepts such as

“deployments” and “services.” For example, the user may specify
that they want a deployment with three instances of a Tomcat
web application running. Kubernetes starts and then continuously
monitors containers, providing auto-restart, re-scheduling, and
replication to ensure the application stays in the desired state.

Kubernetes is available as a standalone installation or in a variety
of distributions, such as Red Hat OpenShift, Pivotal Container
Service, CoreOS Tectonic, and Canonical Kubernetes.

KEY KUBERNETES CONCEPTS
Kubernetes resources can be created directly on the command
line but are usually specified using Yet Another Markup Language
(YAML). The available resources and the fields for each resource
may change with new Kubernetes versions, so it’s important to
double-check the API reference for your version to know what’s
available. It’s also important to use the correct “apiVersion” that
matches your version of Kubernetes. This Refcard uses the API
from Kubernetes 1.12, released 27 September 2018.

POD
A Pod is a group of one or more containers. Kubernetes will
schedule all containers for a pod into the same host, with the
same network namespace, so they all have the same IP address
and can access each other using localhost. Here is an example

pod definition:

apiVersion: v1
kind: Pod
spec:
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - mountPath: /srv/www
 name: www-data
 readOnly: true
 - name: git-monitor
 image: kubernetes/git-monitor
 env:
 - name: GIT_REPO
 value: http://github.com/some/repo.git
 volumeMounts:
 - mountPath: /data
 name: www-data
 volumes:
 - name: www-data
 emptyDir: {}

Not only can containers in a pod share the same network
interfaces, but they can also share volumes, as shown in the

BROUGHT TO YOU IN PARTNERSHIP WITH

CONTENTS

öö WHAT IS KUBERNETES?

öö KEY KUBERNETES CONCEPTS

öö KUBERNETES ARCHITECTURE

öö GETTING STARTED WITH KUBERNETES

öö EXAMPLE APPLICATION

öö NAMESPACE, RESOURCE QUOTAS,

AND LIMITS

öö AND MORE!

UPDATED BY ALAN HOHN, LOCKHEED MARTIN FELLOW

ORIGINAL BY ARUN GUPTA, PRINCIPAL OPEN SOURCE TECHNOLOGIST AT AMAZON WEB SERVICES

 Getting Started with

Kubernetes

https://quay.io/plans/
http://kubernetes.io/
https://www.openshift.com/
https://pivotal.io/platform/pivotal-container-service
https://pivotal.io/platform/pivotal-container-service
https://coreos.com/tectonic/
https://www.ubuntu.com/kubernetes/managed
http://yaml.org/
http://yaml.org/
https://kubernetes.io/docs/reference/#api-reference
https://fission.io/?utm_medium=pdf-ad&utm_source=dzone&utm_campaign=dzone-k8-refcard

fission.io

Get Started Today at Fission.io

https://puppet.com/products/puppet-pipelines?ls=Campaigns&lsd=Sponsored&cid=7010f000001yETB&utm_medium=advertisement&utm_campaign=Q3FY19_WW_All_DEMAND_SPONS_Dzone_puppet-pipe-product-page&utm_source=dzone&utm_content=pipelines-product-page
http://info.puppet.com/Pipelines-Request-Demo?ls=Campaigns&lsd=Sponsored&cid=7010f000001yET6&utm_medium=advertisement&utm_campaign=Q3FY19_WW_All_DEMAND_SPONS_Dzone_puppet-pipe-demo&utm_source=dzone&utm_content=puppet-pipelines-demo-request
https://puppet.com?ls=campaigns&lsd=sponsored&utm_medium=advertisement&utm_source=dzone&utm_content=homepage
http://puppet.com
https://fission.io/?utm_medium=pdf-ad&utm_source=dzone&utm_campaign=dzone-k8-refcard

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

GETTING STARTED WITH KUBERNETES

BROUGHT TO YOU IN PARTNERSHIP WITH

example. This example uses the “git-monitor” container to keep a
Git repository updated in /data so the “nginx” container can run
a web server to serve the repository files.

When a pod is created, Kubernetes will monitor it and
automatically restart it if a process terminates. In addition,
Kubernetes can be configured to attempt to connect to a
container over the network to determine if the pod is ready
(readinessProbe) and still alive (livenessProbe).

DEPLOYMENT
A deployment provides pod scaling and rolling updates.
Kubernetes will make sure that the specified number of pods is
running, and on a rolling update will replace pod instances one at
a time, allowing for application updates with zero downtime.

Deployments graduated from beta in Kubernetes 1.11, and replace
the older concept of Replica Sets. A deployment creates a replica
set, but it is not necessary to interact with the replica set directly.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.15.4
 ports:
 - containerPort: 80

Deployments include a “template” that specifies what the created
pods should look like, so there is no need to separately define a
pod. Kubernetes will automatically create the required number of
pods from the deployment template.

Note that a deployment will identify matching pods using the
matchLabels field. This field must always have the same data as
the metadata.labels field inside the template. The deployment
will take ownership of any other running pods that match the
matchLabels selector, even if they were created separately, so
keep these names unique.

SERVICE
A service provides load balancing to a deployment. In a

deployment, each pod is assigned a unique IP address, and when

a pod is replaced, the new pod typically receives a new IP address.

By declaring a service, we can provide a single point of entry for
all the pods in a deployment. This single point of entry (hostname
and IP address) remains valid as pods come and go.

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80

Services and deployments can be created in any order. The
service actively monitors Kubernetes for pods matching the
selector field. For example, in this case the service will match
pods with metadata.labels content of app: nginx, like the one
shown in the deployment example above.

Services rely on Kubernetes to provide a unique IP address and route
traffic to them, so the way services are configured can be different
depending on how your Kubernetes installation is configured.

PERSISTENT VOLUME CLAIM
Kubernetes has multiple types of storage resources. The Pod
example above shows the simplest, an empty directory mounted
into multiple containers in the same pod. For truly persistent storage,
the most flexible approach is to use a Persistent Volume Claim.

A Persistent Volume Claim requests Kubernetes to dynamically
allocate storage from a Storage Class. The Storage Class is typically
created by the administrator of the Kubernetes cluster and must
already exist. Once the Persistent Volume Claim is created, it can
be attached to a Pod. Kubernetes will keep the storage while the
Persistent Volume Claim exists, even if the attached Pod is deleted.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: web-static-files
spec:
 resources:
 requests:
 storage: 8Gi
 storageClassName: file-store

apiVersion: v1
kind: Pod
metadata:
 name: webserver
spec:
 containers:
 - image: nginx
 name: nginx
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: web-files
 volumes:
 - name: web-files
 persistentVolumeClaim:
 claimName: web-static-files

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

GETTING STARTED WITH KUBERNETES

BROUGHT TO YOU IN PARTNERSHIP WITH

The above example declares both the Persistent Volume Claim

and a Pod that uses it. This example takes advantage of the ability

to place multiple YAML documents in the same file using --- as

a separator. Of course, in a real example, it would be better to

separate the Persistent Volume Claim so it can easily be retained

even if the Pod is deleted.

For more information on the available providers for Kubernetes

Storage Classes, and for multiple examples on configuring persistent

storage, see the DZone Refcard Persistent Container Storage.

KUBERNETES ARCHITECTURE
Kubernetes uses a client-server architecture, as seen here:

A Kubernetes cluster is a set of physical or virtual machines and

other infrastructure resources that are used to run applications.

The machines that manage the cluster are called Masters, and the

machines that run the containers are called Nodes.

MASTER
The Master runs services that manage the cluster. The most

important is kube-apiserver, which is the primary service that

clients and nodes use to query and modify the resources running

in the cluster. The API server is assisted by: etcd, a distributed key-

value store used to record cluster state; kube-controller-manager,

a monitoring program that decides what changes to make when

resources are added, changed, or removed; and kube-scheduler,

a program that decides where to run pods based on the available

nodes and their configuration.

In a highly-available Kubernetes installation, there will be

multiple masters, with one acting as the primary and the others

as replicas.

NODE
A Node is a physical or virtual machine with the necessary

services to run containers. A Kubernetes cluster should have as

many nodes as necessary for all the required pods. Each node

has two Kubernetes services: kubelet, which receives commands

to run containers and uses the container engine (e.g. Docker) to

run them; and kube-proxy, which manages networking rules so

connections to service IP addresses are correctly routed to pods.

As shown in the picture, each node can run multiple pods, and

each pod can include one or more containers. The pod is purely a

Kubernetes concept; the kubelet configures the container engine

to place multiple containers in the same network namespace so

those containers share an IP address.

GETTING STARTED WITH KUBERNETES

SETTING UP KUBERNETES

There are a variety of ways to set up, configure, and run

Kubernetes. It can be run in the cloud using providers such

as Amazon Elastic Container Service for Kubernetes, Google

Kubernetes Engine, Azure Kubernetes Service, Packet, Pivotal

Container Service, and others. It can be also run on-premise by

building a cluster from scratch on physical hardware or via virtual

machines. The various options are described in the Kubernetes

setup documentation, where you can find out which solution is

best for you and get step-by-step instructions. The most popular

option for building a multi-host Kubernetes cluster from scratch

is kubeadm, while the recommended way to get started and run a

single-node cluster for development and testing is to use Minikube.

However you set up your cluster, you will interact with it using the

standard Kubernetes command-line client program kubectl.

MINIKUBE

Minikube uses virtualization software like VirtualBox, VMware, or

KVM to run the cluster. Once Minikube is installed, you can use

the minikube command-line to start a cluster by running the

following command:

minikube start

To stop the cluster, you can run:

minikube stop

To determine the IP address of the cluster is using:

minikube ip

If you are having problems, you can view the logs or ssh into the

host to help debug the issue by using:

minikube logs

minikube ssh

You can also open a dashboard view in the browser to see and

change what is going on in the cluster.

minikube dashboard

http://dzone.com/refcardz
https://dzone.com/refcardz/persistent-container-storage
https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://help.packet.net/en-us/article/73-kubernetes
https://pivotal.io/platform/pivotal-container-service
https://pivotal.io/platform/pivotal-container-service
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/minikube/
https://www.amazon.com/Executing-Data-Quality-Projects-Information/dp/0123743699

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

GETTING STARTED WITH KUBERNETES

BROUGHT TO YOU IN PARTNERSHIP WITH

KUBECTL
kubectl is a command-line utility that controls the Kubernetes

cluster. Commands use this format:

kubectl [command] [type] [name] [flags]

•	 [command] specifies the operation that needs to be

performed on the resource. For example, create, get,

describe, delete, or scale.

•	 [type] specifies the Kubernetes resource type. For

example, pod (po), service (svc), deployment (deploy), or

persistentvolumeclaim (pvc). Resource types are case-

insensitive, and you can specify the singular, plural, or

abbreviated forms.

•	 [name] Specifies the name of the resource, if applicable.

Names are case-sensitive. If the name is omitted, details

for all resources will be displayed (for example, kubectl get

pods).

•	 [flags] Options for the command.

Some examples of kubectl commands and their purpose:

COMMAND PURPOSE

kubectl create -f nginx.
yaml

Create the resources specified
in the YAML file. If any speci-
fied resources exist, an error is
returned.

kubectl delete -f nginx.
yml

Delete the resources spec-
ified in the YAML file. If any
resources do not exist, they
are ignored.

kubectl get pods List all pods in the “default”
namespace. See below for
more information on name-
spaces.

kubectl describe pod
nginx

Show metadata for the “nginx”
pod. The name must match
exactly.

kubectl --help Show the complete list of
available commands.

RUN YOUR FIRST CONTAINER
Most of the time when using kubectl, we create YAML resource

files, so we can configure how we want our application to run.

However, we can create a simple Deployment using kubectl

without using a YAML file:

kubectl create deployment nginx --image=nginx
deployment.apps/nginx created

This command will start a Deployment, which contains a Repilca

Set, which contains a Pod, which contains a Docker container

running an NGINX web server. We can use kubectl to get the

status of the deployment:

kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
AGE
nginx 1 1 1 1
1m

The status of the Replica Set can be seen by using:

kubectl get rs
NAME DESIRED CURRENT READY AGE
nginx-65899c769f 1 1 1 1m

The status of the Pod can be seen by using:

kubectl get po
NAME READY STATUS RESTARTS
AGE
nginx-65899c769f-kp5c7 1/1 Running 0
1m

Of course, most of the time we will use a YAML configuration file:

kubectl create -f nginx-deployment.yaml

The file nginx-deployment.yaml contains the Deployment

definition shown above.

SCALE APPLICATIONS
Deployments can be scaled up and down:

kubectl scale --replicas=3 deploy/nginx
deployment.extensions/nginx scaled

The Kubernetes controller will then work with the scheduler to
create or delete pods as needed to achieve the requested number.
This is reflected in the deployment:

kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
AGE
nginx 3 3 3 3
3m

You can verify there are three pods by running:

kubectl get po
NAME READY STATUS RESTARTS
AGE
nginx-65899c769f-c46xx 1/1 Running 0
38s
nginx-65899c769f-j484j 1/1 Running 0
38s
nginx-65899c769f-kp5c7 1/1 Running 0
3m

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

GETTING STARTED WITH KUBERNETES

BROUGHT TO YOU IN PARTNERSHIP WITH

Note that the original Pod continued to run while two more were
added. Of course, we would also want to create a Service to assist
in load balancing across these instances; see below for a more
complete example.

DELETE APPLICATIONS
Once you are done using the application, you can destroy it with

the delete command.

kubectl delete deployment nginx
deployment.extensions "nginx" deleted

Because Kubernetes monitors pods to achieve the desired
number of replicas, we must delete the Deployment to remove
the application. Simply stopping the container or deleting the
pod will just cause Kubernetes to create another pod.

EXAMPLE APPLICATION
Let’s put multiple Kubernetes
features together to deploy a Node.js
application together with a PostgreSQL
database server. Here is the planned
architecture (see right).

We’ll work from the bottom of the

diagram. First, we’ll define the

PostgreSQL deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: postgresql
 labels:
 app: postgresql
spec:
 replicas: 1
 selector:
 matchLabels:
 app: postgresql
 template:
 metadata:
 labels:
 app: postgresql
 spec:
 containers:
 - name: postgresql
 image: postgres:10.4
 env:
 - name: PGDATA
 value: "/data/pgdata"
 volumeMounts:
 - mountPath: /data
 name: postgresql-data
 volumes:
 - name: postgresql-data
 persistentVolumeClaim:
 claimName: postgresql-data

Note that we use a PersistentVolumeClaim so we get persistent

data; we’ll assume this has been created already since we want it

to stay around for a long time even as we update the application.

Even though there will only be one database instance, we will

create a Service so the IP address will stay the same even if the

PostgreSQL pod is replaced.

kind: Service
apiVersion: v1
metadata:
 name: postgres-service
spec:
 selector:
 app: postgresql
 ports:
 - protocol: TCP
 port: 5432

Next, we create the deployment for the Node.js application:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nodejs
 labels:
 app: nodejs
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nodejs
 template:
 metadata:
 labels:
 app: nodejs
 spec:
 containers:
 - name: nodejs
 image: nodejs:10-alpine
 command: ["npm"]
 args: ["start"]
 env:
 - name: NODE_ENV
 value: production
 workingDir: /app
 volumeMounts:
 - mountPath: /app
 name: node-app
 readOnly: true
 - name: git-monitor
 image: kubernetes/git-monitor
 env:
 - name: GIT_REPO
 value: http://github.com/some/repo.git
 volumeMounts:
 - mountPath: /data
 name: node-app
 volumes:
 - name: www-data
 emptyDir: {}

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

GETTING STARTED WITH KUBERNETES

BROUGHT TO YOU IN PARTNERSHIP WITH

This example uses a “sidecar” container, kubernetes/git-monitor,

to keep our application up to date based on a Git repository.

The sidecar populates a volume which is shared with the

Node.js container.

Finally, we create the service that provides the user entrypoint for

our application:

kind: Service
apiVersion: v1
metadata:
 name: nodejs-service
spec:
 selector:
 app: nodejs
 ports:
 - protocol: TCP
 port: 3000
 type: LoadBalancer

Providing services with external IPs so they can be visible from

outside the cluster is a complex topic because it depends on your

cluster’s environment (e.g. cloud, virtual machine, or bare metal).

This example uses a LoadBalancer service, which requires some

external load balancer such as an Amazon Elastic Load Balancer

to be available and configured in the cluster.

NAMESPACE, RESOURCE QUOTAS, AND LIMITS
Kubernetes uses namespaces to avoid name collisions, to

control access, and to set quotas. When we created resources

above, these went into the namespace default. Other resources

that are part of the cluster infrastructure are in the namespace

kube-system.

To see pods in kube-system, we can run:

$ kubectl get po -n kube-system
NAME READY STATUS
RESTARTS AGE
…
kube-apiserver-minikube 1/1 Running 0
17m
…

RESOURCE ISOLATION
A new namespace can be created from a YAML resource definition:

apiVersion: v1
kind: Namespace
metadata:
 name: development
 labels:
 name: development

Once we’ve created the namespace, we can create resources in it

using the --namespace (-n) flag, or by specifying the namespace

in the resource’s metadata:

apiVersion: v1
kind: Pod
metadata:
 name: webserver
 namespace: development
…

By using separate namespaces, we can have many pods called

webserver and not have to worry about name collisions.

ACCESS CONTROL
Kubernetes supports Role Based Access Control (RBAC).

Here’s an example that limits developers to read-only access for

pods in production. First, we create a ClusterRole, a common

set of permissions we can apply to any namespace:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: pod-read-only
rules:
- apiGroups: [""] # "" indicates the core API group
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

Next, we use a RoleBinding to apply this ClusterRole to a

specific group in a specific namespace:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: read-only
 namespace: production
subjects:
- kind: Group
 name: developers
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: pod-read-only
 apiGroup: rbac.authorization.k8s.io

Alternatively, we can use a ClusterRoleBinding to apply a role

to a user or group in all namespaces.

RESOURCE QUOTAS
By default, pods have unlimited resources. We can apply a quota

to a namespace:

http://dzone.com/refcardz

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

8

GETTING STARTED WITH KUBERNETES

BROUGHT TO YOU IN PARTNERSHIP WITH

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
 namespace: sandbox
spec:
 hard:
 cpu: "5"
 memory: 10Gi

Kubernetes will now reject unlimited pods in this namespace.

Instead, we need to apply a limit:

apiVersion: v1
kind: Pod
metadata:
 name: webserver
 namespace: sandbox
spec:
 containers:
 - image: nginx
 name: nginx
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"

Note that we can request fractions of a CPU and use varying units

for memory.

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright © 2018 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each

month to more than 3.3 million software developers,

architects and decision makers. DZone offers something

for everyone, including news, tutorials, cheat sheets,

research guides, feature articles, source code and more.

"DZone is a developer’s dream," says PC Magazine.

Written by Alan Hohn, Lockheed Martin Fellow
Alan Hohn is a Lockheed Martin Fellow who has worked as a software architect, lead, and manager. After

many years writing and teaching Java, he now mostly creates services in Go and Python. He is an advocate,

trainer, and coach for Agile and DevOps, and is the author of recent video courses on Ansible.

http://dzone.com/refcardz
http://www.dzone.com

