
Helping You Navigate
The Technology Jungle! In Partnership With

www.actualtechmedia.com

INSIDE THE GUIDE:
•	 Why the Industry Has Embraced Containers

•	 Keys to Smoothing Your Kubernetes On-ramp

•	 Managed Kubernetes Provides the Optimal Experience

The
Gorilla
Guide to...

®

PLATFORM9 PRESENTS

Kubernetes in the
Enterprise
Joep Piscaer

Kubernetes in the
Enterprise

AUTHOR
Joep Piscaer

EDITOR
Keith Ward, ActualTech Media

LAYOUT AND DESIGN
Olivia Thomson, ActualTech Media

THE GORILLA GUIDE TO...

Copyright © 2019 by ActualTech Media

All rights reserved. This book or any portion thereof may not be reproduced or used
in any manner whatsoever without the express written permission of the publisher
except for the use of brief quotations in a book review.
Printed in the United States of America.

ACTUALTECH MEDIA
Okatie Village Ste 103-157
Bluffton, SC 29909
www.actualtechmedia.com

i i i

ENTERING THE JUNGLE

Chapter 1: The Changing Development Landscape� 7
The Benefits of Creating Cloud Native Applications� 9

Why Kubernetes� 14

Developer Agility� 15

Chapter 2: Kubernetes Concepts and Architecture� 20
Kubernetes Constructs and Concepts� 21

Chapter 3: Deploying Kubernetes� 32
On-Premises Implementations� 33

Public Cloud� 33

Networking Concerns� 33

Lifecycle Management� 34

Configuration and Add-ons� 35

Chapter 4: Putting Kubernetes To Work� 37
Giving Users Access� 37

Monitoring and Ensuring Cluster Health� 39

Monitoring and Ensuring Application Health� 40

Persistent Storage� 44

Chapter 5: Managed Kubernetes Solutions� 45
Focus on Moving the Business Forward� 46

Simplifying Open Source� 46

Choosing a Managed Kubernetes Solution� 47

iv

Chapter 6: Top Use Cases� 49
Simple Deployment of Stateless Applications� 49

Deploy Stateful Data Services� 52

CI/CD Platform with Kubernetes� 54

Chapter 7: Platform9 Managed Kubernetes � 56
Getting Started with Platform9 Managed Kubernetes� 58

Built-in Application Catalog� 59

Web CLI� 60

Chapter 8: The Big Decision� 61
Play in the Sandbox� 62

v

CALLOUTS USED IN THIS BOOK

The Gorilla is the professorial sort that
enjoys helping people learn. In the School
House callout, you’ll gain insight into top-
ics that may be outside the main subject
but are still important.

This is a special place where you can learn
a bit more about ancillary topics presented
in the book.

When we have a great thought, we express
them through a series of grunts in the
Bright Idea section.

Takes you into the deep, dark depths of a
particular topic.

Discusses items of strategic interest to busi-
ness leaders.

vi

ICONS USED IN THIS BOOK

DEFINITION
Defines a word, phrase, or concept.

KNOWLEDGE CHECK
Tests your knowledge of what you’ve read.

PAY AT TENTION
We want to make sure you see this!

GPS
We’ll help you navigate your knowledge to the

right place.

WATCH OUT!
Make sure you read this so you don’t make a crit-

ical error!

CHAPTER 1

The Changing Development
Landscape
The way we build and run applications has changed dramatically over

the years. Traditionally, apps ran on top of physical machines. Those

machines eventually became virtual. In both cases, the application

and all its dependencies were installed on top of an OS.

This relationship between OS and applications created a tightly-cou-

pled bundle of everything needed to run that application. Each virtual

machine (VM) ran a complete OS, no matter how big or small the VM

was, or how demanding the application on top.

Each OS provided a complete execution environment for applications:

this included binaries, libraries and services, as well as compute,

storage, and networking resources.

Drawbacks of this approach are the inherent size and volume of VMs.

Each OS is many gigabytes in size, which not only requires storage

space, but also increases the memory footprint. See Figure 1.

This size and tight coupling results in a number of complexities in the

VM lifecycle and the applications running on top. Without a good way

of separating different layers in a VM (OS, libraries, services, applica-

tion binaries, configuration, and data), swapping out different parts in

this layer cake is nearly impossible. For this reason, once a VM is built,

configured and running, it usually lives on for months or years. This

leads to pollution and irreversible entangling of the VM in terms of OS,

data, and configuration.

T he C hanging D e v elopment L andscape
 8

New versions of the OS, its components, and other software inside the

VM are layered on top of the older version. Because of this, each in-

place upgrade creates potential version conflicts, stability problems,

and ballooning of uncleaned recent versions on disk. Maintaining this

ever-increasing complexity is a major operational pain point, and

often leads to downtime.

This places an unbalanced operational focus on the OS and underlying

layers, instead of the place it should be: the application.

Operational friction, an unnecessarily large and perennial operating

environment, and lack of decoupling between layers are all in sharp

contrast with how lean and agile software development works. It’s

no surprise, then, that the traditional approach doesn’t work for

modern software development.

In the new paradigm, developers actively break down work into

smaller chunks, create (single-piece) flow, and take control and

ownership over the pipeline that brings code from local testing all

the way to production. Containers, microservices and cloud-native

application design are facilitating this.

Virtual Machines Containers

App 1

Bins/Lib

Hypervisor

Infrastructure

Guest OS

App 2

Bins/Lib

Guest OS

App 3

Bins/Lib

Guest OS

App 1

Bins/Lib

Operating System

Container Runtime

Infrastructure

App 2

Bins/Lib

App 3

Bins/Lib

Figure 1: Virtualization vs. containerization

T he C hanging D e v elopment L andscape
 9

The Benefits of Creating Cloud Native
Applications
Let’s break down how these technologies enable modern software

development methodologies.

Containers
First and foremost, containers package up only the parts of the applica-

tion unique to that container, like the business logic. Containers share

the underlying OS and often common libraries, frameworks, or other

pieces of middleware. This results in much lighter packages (contain-

ers are usually megabytes, instead of the gigabytes that are typical

with VMs), and are clearly decoupled from the layer cake underneath.

Because of this decoupling, a new one-to-one relationship between

the container image and the application unlocks the full benefits of

containers.

A container can be spun up on different hosts, clusters or clouds with-

out any change to the container or its definition. Decoupling from the

OS underneath makes it simpler to maintain those underlying layers.

The OS becomes a commodity to developers: a black box layer that

just works. Developers no longer have to think about that layer.

This allows easier and automated updating and changing of the

layers underneath. Because the layers are decoupled, production

systems are rarely patched or updated. The new version of the OS is

deployed fresh, and the old system with the old version is discarded.

The same goes for a new version of the application inside the contain-

er: instead of updating the container, a new container with the new

version is deployed, and traffic is diverted to that new container. The

old one is killed as soon as the new container is operating correctly.

This approach is called ‘immutable infrastructure,’ defined as a

clearer separation between the application, operating system, and the

T he C hanging D e v elopment L andscape
 1 0

underlying infrastructure. This allows easier and more independent

changes in each layer. Operationally, this makes a world of difference

as different teams can take more ownership and responsibility of

each layer.

With this decoupling comes a new interface between the OS and

container, giving developers freedom to deploy new versions of their

applications without intervention from the teams managing the layers

underneath. This gives developers more control over when to deploy

what to production. Rolling back a bad release or redirecting more

traffic to a new version is a simple task, without friction or dependency

on the infrastructure or operations teams.

In turn, the infrastructure and operations teams can take more

control over their parts of the layer cake, enabling paradigms like

Infrastructure-as-Code that allow treating infrastructure as a

software development problem. This enables solutions like creating

declarative code that instructs a pipeline of infrastructure automation

software how to create and configure infrastructure.

Cloud-native Services
While containers are a great fit for custom business logic and code,

many of the moving parts of an application stack are standard and

common components. Instead of re-inventing the wheel, using

commercially available and/or open source software for those com-

ponents makes sense. Other than a few niche and extreme use cases,

why build your own database engine, caching layer or web server?

That’s why many public cloud providers offer those components

and middleware as a service; the goal is to make consumption as

frictionless as possible. Developers can simply configure the entire

software stack with a few clicks, using databases, proxies, web serv-

ers, message queues and much more.

T he C hanging D e v elopment L andscape
 1 1

But cloud-native means more than simply consuming existing tech-

nology as a service. The Cloud Native Computing Foundation, or CNCF

for short, defines “cloud native” as follows:

Cloud native technologies empower organizations to build and

run scalable applications in modern, dynamic environments such

as public, private, and hybrid clouds. Containers, service meshes,

microservices, immutable infrastructure, and declarative APIs

exemplify this approach.

These techniques enable loosely coupled systems that are resilient,

manageable, and observable. Combined with robust automation,

they allow engineers to make high-impact changes frequently and

predictably with minimal toil.

This definition puts the focus on more than just a set of technological

tools. It encompasses business outcomes like scalability, dynamic

behavior, and resiliency; standards regarding certain patterns of

methodology and design like immutability and frequent changes;

and a focus on operational excellence with abilities like decoupling,

observability, and automation.

It’s this comprehensive approach that makes cloud-native so ap-

pealing: it’s not just about technology, but about how tech is used

within organizations, and what outcomes are achieved.

This creates an integrated ecosystem of products that checks all the

boxes of CNCF’s definition, and which organizations can use to hit

the ground running. As such, it eliminates much of the groundwork

processes like design, integration, and implementation that otherwise

takes a lot of time.

T he C hanging D e v elopment L andscape
 1 2

CNCF’s biggest and highest-velocity projects are integrated and

broad, including:

Kubernetes is a container orchestration platform that

helps users build, scale and manage modern applica-

tions and their dynamic lifecycles. The cluster scheduler

capability lets developers focus on code rather than ops.

Kubernetes future-proofs infrastructure management

on-premises or in the cloud, without vendor or cloud

provider lock-in.

Prometheus delivers real-time monitoring, alert-

ing, and time series database capabilities (including

powerful queries and visualizations) for cloud-native

applications. It’s the de facto standard for monitor-

ing container-based infrastructure. Prometheus pro-

vides needed visibility into, and troubleshooting for,

cloud-native architectures.

Envoy is a distributed proxy designed for single

services and applications, as well as a universal data

plane designed for large microservice service mesh

architectures. Envoy runs alongside every application,

and abstracts the network by providing common

features in a platform-agnostic manner. It’s easy to

visualize problem areas via consistent observability,

tune overall performance, and add substrate features

in a single place.

CoreDNS is a DNS server, written in Go. It can be used in

a multitude of environments because of its flexibility.

T he C hanging D e v elopment L andscape
 1 3

Besides these four, there are many additional projects that are relevant

to Kubernetes in 2019. The most notable include:

1.	 Fluentd. This is a unified logging tool that helps users better un-

derstand what’s happening in their environments by providing a

unified layer for collecting, filtering, and routing log data.

2.	 NATS. This is a simple, high-performance open source mes-

sage queueing and publish/subscribe system for cloud-native

applications.

3.	 gRPC. This is a high-performance, open source universal RPC

framework.

4.	 Containerd. This is an industry-standard container runtime with

an emphasis on simplicity, robustness and portability.

5.	 Linkerd. An ultralight service mesh for Kubernetes and beyond,

Linkerd provides observability, reliability, and security for micro-

services, with no code change required.

6.	 CNI. The Container Network Interface provides networking for

Linux containers.

7.	 CSI. This stands for Container Storage Interface. It provides

storage for Linux containers.

8.	 Helm. This is the package manager for Kubernetes. Helm is the

best way to find, share, and use software built for Kubernetes.

Of course, there are numerous software projects not part of the CNCF

that fit into the ecosystem very well. Examples include Istio, the

popular service mesh, and Terraform, the composable infrastructure

automation tool.

T he C hanging D e v elopment L andscape
 1 4

Why Kubernetes
Let’s look at the CNCF’s most popular project, Kubernetes (Figure 2).

Kubernetes is the orchestration layer that manages containers across

a group of physical servers or VMs. Kubernetes is specifically designed

to manage the ephemeral nature of thousands of containers spinning

up, scaling up, and winding down.

Kubernetes manages versioning of containers, figures out how

containers can talk to each other over the network, exposes services

running inside containers, and handles storage considerations. It also

deals with failed hardware, and maintaining container availability.

Kubernetes makes it easy to quickly ramp up container instances to

match spikes in demand. New versions can be put into production in

small increments (these are known as canary deployments.)

Kubernetes can be thought of as a container-centric computing plat-

form. It has much of the flexibility of Infrastructure-as-a-Service (in

terms of managing compute, storage and networking resources), with

the developer-friendly workflows and constructs found in Platform-

Figure 2: The Kubernetes layer cake of infrastructure, containers and applications.

T he C hanging D e v elopment L andscape
 1 5

as-a-Service on top. These include deployment, scaling, load balanc-

ing, logging, monitoring, and composition of application containers

across clusters of container hosts.

Kubernetes is more than just a container orchestrator or resource

scheduler. On the infrastructure side, it aims to remove the toil of or-

chestrating compute, network, and storage resources. It also abstracts

those constructs so application developers and operators can focus

entirely on container-centric workflows and self-service operation.

On the container side, Kubernetes provides a platform for building

customized workflows and higher-level automation. It integrates

into the continuous integration/continuous delivery (CI/CD) pipelines

developers use to bring code into production in a controlled, tested

and automated fashion.

The platform brings together infrastructure operations and software

development by design. It uses declarative, infrastructure-agnostic

constructs to describe applications and how they interact, without

the traditional close ties into the underlying infrastructure.

Kubernetes runs just as well on traditional on-premises infrastruc-

ture stacks as it does for third-party service providers and public

cloud environments.

Developer Agility
We’ve seen that containers unlock the full benefits of agile software

development and operations. Creating smaller, portable container

images that contain only the application increases developer velocity

and the speed through the pipeline into production, which massively

reduces the inertia of each release.

Creating “flow” is one of the core principles of agile software devel-

opment, and reducing the size of the piece of code moving through

the developer’s delivery pipeline without being blocked is critical.

T he C hanging D e v elopment L andscape
 1 6

Containers are a major reduction in size compared to VMs, and help

developers push code to production in smaller increments, and more

often. This limits the impact of mistakes, as any changes causing the

mistake will be small; this makes them quick and easy to roll back, due

to image immutability. Developers can simply roll back to a previous

version, without having to worry very much about data consistency or

data loss.

A major cause of mistakes in production is the lack of environmental

consistency across development and production environments. With

Yes, Containers Can Be
Stateful
In the earlier stages of Kubernetes

and container maturity, it was often

believed that containers were only

suitable for stateless workloads, and

that storing any data or state in a con-

tainer was impossible.

This belief is wrong; both the underlying container runtime (which

is often Docker) and Kubernetes fully support a diverse variety of

workloads, including stateful applications.

Containers themselves are ephemeral and immutable, meaning that

any file system changes are lost after the container shuts down.

But there are plenty of options for adding stateful storage to a

container, ranging from NFS network shares to S3 object stores and

full-fledged data center storage options like a SAN.

Many organizations deploying Kubernetes actually use existing

storage assets for stateful storage. Another popular storage option

is a hyperconverged storage deployment pattern like the open

source CEPH or VMware’s VSAN.

T he C hanging D e v elopment L andscape
 1 7

containers, the image is identical and immutable, no matter where

it runs; this is true even if the underlying resources differ massively.

So, if it runs on the developer’s laptop, it will run in production.

A common blocker of the pipeline is the separation of concerns between

development and operations. This typically leads to a dependency of

the developer on the Ops team to install the new application version

during deployment, often by using configuration management tooling

like Chef or a package manager.

With containers, images are built automatically at build/release time

and deployed as an atomic unit. This allows Ops to influence how the

images are built asynchronous to the deployment, while developers

have full control during deployment. In a container configuration,

dependencies are added as lines of code and either specify a specific

version of that dependency, or depend on the latest version at build

time. This helps in managing security breaches and keeping code se-

cure (and lean), as dependencies are updated automatically and often.

While Kubernetes and the common underlying container runtime

themselves don’t deploy source code or build your application, they’re

easily integrated into CI/CD workflows and pipelines.

Cost Management
Similar to the move from physical to virtual servers, moving to con-

tainers optimizes resource usage. This lowers the cost of each applica-

tion, as it runs more efficiently. As discussed before, a major difference

between a VM and a container is its relative size: a container is mag-

nitudes smaller than a VM. This makes it nimbler and more flexible,

especially from a cost perspective. This allows the container to run

where it’s cheaper, an important consideration in ephemeral compute

instances where the application is non-production or resilient itself.

Secondly, more but smaller containers are more easily scheduled

across multiple hosts as compared to fewer but bigger VMs. This is

called the “bin-packing problem.”

T he C hanging D e v elopment L andscape
 1 8

The dynamic nature of containers in a Kubernetes cluster, utilizing the

Horizontal Pod Autoscaler,1 means that application cost goes hand-in-

hand with application demand. While this is fantastic for scalability,

it can sometimes have unintended consequences on the budget. The

plethora of options muddies the waters pretty quickly. Even with the

relatively simple cost model of physical servers, assigning a fraction

of cost to a certain team, department, or application is difficult. Add

in the complex offering of public cloud instance types, and it becomes

near impossible to assign cost.

There are some solutions for cost control, like CloudHealth, CoreOS

Operator Framework, and Platform9’s Arbitrage that help assign

cost across the multitude of layers in Kubernetes and the underlying

public cloud or on-premises platform.

These solutions figure out the charges for consumed infrastructure

cost and assign them to clusters, namespaces, and pods inside

Kubernetes. Besides the pods that run the actual applications, these

solutions also split pods into administrative, monitoring, logging,

and idle resources.

But in reality, many people apply the ‘guesstimate’ method, espe-

cially in the early phases of containerization projects. And however

unscientific it is, this method does fit in with the reasoning behind

the move toward containers and developer agility: create flow, in-

crease velocity, and remove hurdles in their pipeline to production.

Only after implementation does cost control start to matter. The tan-

gible benefits of the system have started to manifest in day-to-day

operations; after that, the downsides, including cost sprawl, need to

be reined in, but only after it’s proven successful.

And here lies the true cost/benefit analysis: it’s not just about controlling

infrastructure costs, but developer costs, too: how much quicker can

1 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

T he C hanging D e v elopment L andscape
 1 9

they move to production or roll back a faulty release, for instance, and

what financial consequences, good or bad, does that have?

This brings us to the fundamental value of agility: smaller iterations

of work. This means going through the “discover-plan-build-review”

cycle much, much more often. Optimizing the developer’s flow makes

them more efficient, which in turn makes them less expensive. As more

and more companies invest in software development, the cost balance

is shifting from infrastructure to developer; given this, it makes more

sense to optimize the higher-cost items.

Accelerate Project Timelines
For many developers, Kubernetes means ‘less friction.’ A produc-

tion-grade Kubernetes platform usually includes monitoring, logging,

tracing, release management for blue/green or canary deployments,

automated testing in the pipeline, and automated deployment.

All of these reduce friction, making it cheap and easy to deploy

software to production. This means less management overhead and

associated processes, including approvals, change advisory boards,

and release/deployment managers.

This is especially true for development in microservices envi-

ronments, where boundaries between teams are carried forward

in the services and products they deliver. These microservices are

loosely-coupled, small and independent pieces of a larger network

of services that make up an application. All these services can be

deployed and managed independently and dynamically, making it

easier for a team to put a new piece of code into production without

dependence on another team.

This gives teams the freedom to decide if they want to bring in an

existing (paid-for) solution, or if they’ll build it themselves. While

existing solutions may be more expensive up front, the delivery

timeframe is usually compressed significantly.

CHAPTER 2

Kubernetes Concepts and
Architecture
As stated before (but is worth stating again), Kubernetes is an open-

source platform for deploying and managing containers. It provides

a container runtime, container orchestration, container-centric

infrastructure orchestration, self-healing mechanisms, service

discovery and load balancing. It’s used for the deployment, scaling,

management, and composition of application containers across clus-

ters of hosts.

But Kubernetes is more than just a container orchestrator. It could

be thought of as the operating system for cloud-native applications

in the sense that it’s the platform that applications run on, just as

desktop applications run on MacOS, Windows, or Linux.

It aims to reduce the burden of orchestrating underlying compute,

network, and storage infrastructure, and enable application opera-

tors and developers to focus entirely on container-centric workflows

for self-service operation. It allows developers to build customized

workflows and higher-level automation to deploy and manage ap-

plications composed of multiple containers.

While Kubernetes runs all major categories of workloads, such as

monoliths, stateless or stateful applications, microservices, services,

batch jobs and everything in between, it’s commonly used for the

microservices category of workloads.

In the early years of the project, it mostly ran stateless applications,

but as the platform has gained popularity, more and more storage

K ubernetes C oncepts and A rchitecture
 2 1

integrations have been developed to natively support stateful appli-

cations (see “Yes, Containers Can Be Stateful” on page 16.)

Kubernetes is a very flexible and extensible platform. It allows you to

consume its functionality a-la-carte, or use your own solution in lieu

of built-in functionality. On the other hand, you can also integrate

Kubernetes into your environment and add additional capabilities.

Kubernetes Constructs and Concepts
From a high level, a Kubernetes environment consists of a control

plane (master), a distributed storage system for keeping the cluster

state consistent (etcd), and a number of cluster nodes (Kubelets).

See Figure 3.

Ctrl Plane - 1,2...n

Node 1

etcd

Cloud
Provider

Network Edge

controller
manager

kube
apiserver

scheduler

End Users

Pods

System Services

Container Runtime

kubelet

Node 1

Pods

System Services

Container Runtime

kubelet

Load
Balancer

kubectl

Figure 3: Architectural overview of Kubernetes.

K ubernetes C oncepts and A rchitecture
 2 2

Control Plane
The control plane is the system that maintains a record of all

Kubernetes objects. It continuously manages object states, respond-

ing to changes in the cluster; it also works to make the actual state of

system objects match the desired state.

As Figure 4 shows, the control plane is made up of three ma-

jor components: kube-apiserver, kube-controller-manager and

kube-scheduler. These can all run on a single master node, or can be

replicated across multiple master nodes for high availability.

Ctrl Plane - 1,2...n

Containers

cloud-controller manager

kube-controller-manager

kube-scheduler kube-apiserver

kube-proxy

Additional Services

etcd

kubelet

Container Runtime

System Services

kubectl
Cloud

Provider API

Figure 4: Kubernetes’ control plane taxonomy.

K ubernetes C oncepts and A rchitecture
 2 3

The API Server provides APIs to support lifecycle orchestration

(scaling, updates, and so on) for different types of applications. It

also acts as the gateway to the cluster, so the API server must be

accessible by clients from outside the cluster. Clients authenticate via

the API Server, and also use it as a proxy/tunnel to nodes and pods

(and services).

Most resources contain metadata, such as labels and annotations,

desired state (specification) and observed state (current status).

Controllers work to drive the actual state toward the desired state.

There are various controllers to drive state for nodes, replication

(autoscaling), endpoints (services and pods), service accounts and

tokens (namespaces). The Controller Manager is a daemon that

runs the core control loops, watches the state of the cluster, and

makes changes to drive status toward the desired state. The Cloud
Controller Manager integrates into each public cloud for optimal

support of availability zones, VM instances, storage services, and

network services for DNS, routing and load balancing.

The Scheduler is responsible for the scheduling of containers across

the nodes in the cluster; it takes various constraints into account,

such as resource limitations or guarantees, and affinity and anti-af-

finity specifications.

Cluster Nodes
Cluster nodes are machines that run containers and are managed by

the master nodes (Figure 5). The Kubelet is the primary and most

important controller in Kubernetes. It’s responsible for driving the

container execution layer, typically Docker.

Pods and Services
Pods are one of the crucial concepts in Kubernetes, as they are the

key construct that developers interact with. The previous concepts

are infrastructure-focused and internal architecture.

K ubernetes C oncepts and A rchitecture
 2 4

This logical construct packages up a single application, which can

consist of multiple containers and storage volumes. Usually, a single

container (sometimes with some helper program in an additional

container) runs in this configuration. Figure 6 shows the architecture.

Alternatively, pods can be used to host vertically-integrated appli-

cation stacks, like a WordPress LAMP (Linux, Apache, MySQL, PHP)

application. A pod represents a running process on a cluster.

Pods are ephemeral, with a limited lifespan. When scaling back down

or upgrading to a new version, for instance, pods eventually die. Pods

can do horizontal autoscaling (i.e., grow or shrink the number of

instances), and perform rolling updates and canary deployments.

Containers

kube-proxy

Container Runtime

kubelet

System Services

Node 1

pod pod

Figure 5: Kubernetes node taxonomy.

K ubernetes C oncepts and A rchitecture
 2 5

There are various types of pods:

•	 ReplicaSet, the default, is a relatively simple type. It ensures the

specified number of pods are running

•	 Deployment is a declarative way of managing pods via ReplicaSets.

Includes rollback and rolling update mechanisms

•	 Daemonset is a way of ensuring each node will run an instance

of a pod. Used for cluster services, like health monitoring and log

forwarding

•	 StatefulSet is tailored to managing pods that must persist or

maintain state

•	 Job and CronJob run short-lived jobs as a one-off or on a schedule.

This inherent transience creates the problem of how to keep track of

which pods are available and running a specific app. This is where

Services come in.

Pod

Network Namespace 10.255.16.3

Host A

Container

External
Volume

Pod Network

Container

Figure 6: Pod architecture.

K ubernetes C oncepts and A rchitecture
 2 6

Services are the Kubernetes way of configuring a proxy to forward

traffic to a set of pods. Instead of static IP address-based assign-

ments, Services use selectors (or labels) to define which pods uses

which service. These dynamic assignments make releasing new

versions or adding pods to a service really easy. Anytime a Pod with

the same labels as a service is spun up, it’s assigned to the service.

By default, services are only reachable inside the cluster using the

clusterIP service type. Other service types do allow external access;

the LoadBalancer type is the most common in cloud deployments. It

will spin up a load balancer per service on the cloud environment,

which can be expensive. With many services, it can also become

very complex.

To solve that complexity and cost, Kubernetes supports Ingress, a

high-level abstraction governing how external users access services

running in a Kubernetes cluster using host- or URL-based HTTP

routing rules.

There are many different Ingress controllers (Nginx, Ambassador),

and there’s support for cloud-native load balancers (from Google,

Amazon, and Microsoft). Ingress controllers allow you to expose

multiple services under the same IP address, using the same load

balancers.

Ingress functionality goes beyond simple routing rules, too. Ingress

enables configuration of resilience (time-outs, rate limiting), con-

tent-based routing, authentication and much more.

Networking
Kubernetes has a distinctive networking model for cluster-wide, pod-

to-pod networking. In most cases, the Container Network Interface

(CNI) uses a simple overlay network (like Flannel) to obscure the

underlying network from the pod by using traffic encapsulation (like

VXLAN); it can also use a fully-routed solution like Calico. In both

K ubernetes C oncepts and A rchitecture
 2 7

cases, pods communicate over a cluster-wide pod network, managed

by a CNI provider like Flannel or Calico.

Within a pod, containers can communicate without any restrictions.

Containers within a pod exist within the same network namespace

and share an IP. This means containers can communicate over

localhost. Pods can communicate with each other using the pod IP

address, which is reachable across the cluster.

Moving from pods to services, or from external sources to services,

requires going through kube-proxy.

Persistent Storage
Kubernetes uses the concept of volumes. At its core, a volume is just a

directory, possibly with some data in it, which is accessible to a pod.

How that directory comes to be, the medium that backs it, and its

contents are determined by the particular volume type used.

Kubernetes has a number of storage types, and these can be mixed

and matched within a pod (see Figure 7). Storage in a pod can be

consumed by any containers in the pod. Storage survives pod restarts,

but what happens after pod deletion is dependent on the specific

storage type.

There are many options for mounting both file and block storage to

a pod. The most common ones are public cloud storage services, like

AWS EBS and gcePersistentDisk, or types that hook into a physi-

cal storage infrastructure, like CephFS, Fibre Channel, iSCSI, NFS,

Flocker or glusterFS.

There are a few special kinds, like configMap and Secrets, used for

injecting information stored within Kubernetes into the pod or emp-

tyDir, commonly used as scratch space.

PersistentVolumes (PVs) tie into an existing storage resource, and

are generally provisioned by an administrator. They’re cluster-wide

K ubernetes C oncepts and A rchitecture
 2 8

objects linked to the backing storage provider that make these re-

sources available for consumption.

For each pod, a PersistentVolumeClaim makes a storage consump-

tion request within a namespace. Depending on the current usage

of the PV, it can have different phases or states: available, bound

(unavailable to others), released (needs manual intervention) and

failed (Kubernetes could not reclaim the PV).

Finally, StorageClasses are an abstraction layer to differentiate the

quality of underlying storage. They can be used to separate out

different characteristics, such as performance. StorageClasses are

not unlike labels; operators use them to describe different types of

storage, so that storage can be dynamically be provisioned based

on incoming claims from pods. They’re used in conjunction with

PersistentVolumeClaims, which is how pods dynamically request

new storage. This type of dynamic storage allocation is commonly

used where storage is a service, as in public cloud providers or stor-

age systems like CEPH.

Pod

Pod 2

volumeMounts:
/foo

Persistent
Volume Claim

Persistent
Volume

Static

StorageClass

Dynamic

PVC

PV

- 100 Gi

- Selector

- StorageClassName

Volumes:
PVC

claimName BIND

Figure 7: Persistent volumes, claims and storage classes.

K ubernetes C oncepts and A rchitecture
 2 9

Discovering and Publishing Services

Discovering services is a crucial part of a healthy Kubernetes envi-

ronment, and Kubernetes heavily relies on its integrated DNS service

(either Kube-DNS or CoreDNS, depending on the cluster version)

to do this. Kube-DNS and CoreDNS create, update and delete DNS

records for services and associated pods, as shown in Figure 8. This

allows applications to target other services or pods in the cluster via

a simple and consistent naming scheme.

An example of a DNS record for a Kubernetes service:

service.namespace.svc.cluster.local

Host A

Labels:
app=nginx
env=prod

Labels:
app=nginx
env=prod

Labels:
app=mysql
env=dev

Service
app=nginx
env=prod

Host B

Labels:
app=nginx
env=prod

Labels:
app=mysql
env=prod

Labels:
app=nginx
env=dev

Figure 8: The Kubernetes service taxonomy.

K ubernetes C oncepts and A rchitecture
 3 0

A pod would have a DNS record such as:

10.32.0.125.namespace.pod.cluster.local

There are four different service types, each with different behaviors.

1.	 ClusterIP exposes the service on an internal IP only. This makes

the service reachable only from within the cluster. This is the

default type.

2.	 NodePort exposes the service on each node’s IP at a specific

port. This gives the developers the freedom to set up their own

load balancers, for example, or configure environments not fully

supported by Kubernetes.

3.	 LoadBalancer exposes the service externally using a cloud pro-

vider’s load balancer. This is often used when the cloud provid-

er’s load balancer is supported by Kubernetes, as it automates

their configuration.

4.	 ExternalName will just map a CNAME record in DNS. No proxy-

ing of any kind is established. This is commonly used to create a

service within Kubernetes to represent an external datastore like

a database that runs externally to Kubernetes. One potential use

case would be using AWS RDS as the production database, and a

MySQL container for the testing environment.

Namespaces, Labels, and Annotations
Namespaces are virtual clusters within a physical cluster. They’re

meant to give multiple teams, users, and projects a virtually sepa-

rated environment to work on, and prevent teams from getting in

each other’s way by limiting what Kubernetes objects teams can see

and access.

Labels distinguish resources within a single namespace. They are

key/value pairs that describe attributes, and can be used to organize

and select subsets of objects. Labels allow for efficient queries and

K ubernetes C oncepts and A rchitecture
 3 1

watches, and are ideal for use in user-oriented interfaces to map

organization structures onto Kubernetes objects.

Labels are often used to describe release state (stable, canary), en-

vironment (development, testing, production), app tier (frontend,

backend) or customer identification. Selectors use labels to filter or

select objects, and are used throughout Kubernetes. This prevents

objects from being hard linked.

Annotations, on the other hand, are a way to add arbitrary non-iden-

tifying metadata, or baggage, to objects. Annotations are often used

for declarative configuration tooling; build, release or image informa-

tion; or contact information for people responsible.

Tooling and Clients
Here are the basic tools you should know:

•	 Kubeadm bootstraps a cluster. It’s designed to be a simple way

for new users to build clusters (more detail on this is in a later

chapter).

•	 Kubectl is a tool for interacting with your existing cluster.

•	 Minikube is a tool that makes it easy to run Kubernetes locally.

For Mac users, HomeBrew makes using Minikube even simpler.

There’s also a graphical dashboard, Kube Dashboard, which runs as

a pod on the cluster itself. The dashboard is meant as a general-pur-

pose web frontend to quickly get an impression of a given cluster.

CHAPTER 3

Deploying Kubernetes
Deploying a Kubernetes cluster from scratch can be a daunting task.

It requires knowledge of its core concepts, the ability to make archi-

tecture choices, and expertise on the deployment tools and knowledge

of the underlying infrastructure, be it on-premises or in the cloud.

Selecting and configuring the right infrastructure is the first chal-

lenge. Both on-premises and public cloud infrastructure have their

own difficulties, and it’s important to take the Kubernetes archi-

tecture into account. You can choose to not run any pods on master

nodes, which changes the requirements for those machines. Dedicated

master nodes have smaller minimum hardware requirements.

Big clusters put a higher burden on the master nodes, and they need to

be sized appropriately. It’s recommended to run at least three nodes

for etcd, which allows a single node failure. While it may be tempting

to run etcd on the same nodes as the Kubernetes master nodes, it’s

recommended to create and run the etcd as a separate cluster.

Adding more nodes will protect against multiple node failures simul-

taneously (5 nodes/2 failures and 7 nodes/4 failures), but each node

added can decrease Kubernetes’ performance. For master nodes,

running two protects against failure of any one node.

For both the etcd cluster and Kubernetes master nodes, designing for

availability across multiple physical locations (such as Availability

Zones in AWS) protects the Kubernetes environment against physical

and geographical failure scenarios.

D eploying K ubernetes
 3 3

On-Premises Implementations
Many on-premises environments are repurposed to integrate with

Kubernetes (like creating clusters on top of VMs). In some cases, a

new infrastructure is created for the cluster. In any case, integrating

servers, storage and networking into a smoothly-running environ-

ment is still highly-skilled work.

For Kubernetes, planning for the right storage and networking

equipment is especially important, as it has the ability to interact

with these resources to provision storage, load balancers and the

like. Being able to automate storage and networking components is a

critical part of Kubernetes’ value proposition.

Public Cloud
This is why many, for their first foray into Kubernetes, spin up

clusters in public cloud environments. Kubernetes deployment tools

integrate natively with public cloud environments, and are able to spin

up the required compute instances, as well as configure storage and

networking services for day-to-day operations.

For cloud instances, it’s critically important to select the right instance

type. While some instance types are explicitly a bad idea (for example,

VMs with partial physical CPUs assigned or with CPU oversubscrip-

tion), others might be too expensive. An advantage of public clouds is

their consumption-based billing, which provides the opportunity to

re-evaluate consumption periodically.

Networking Concerns
The slightly-different-than-usual networking model of Kubernetes

requires some planning. The most basic networking pieces are the

addresses for the nodes and public-facing Kubernetes parts. These

are part of the regular, existing network. Kubernetes allocates an IP

D eploying K ubernetes
 3 4

block for pods, as well as a block for services. Of course, these ranges

should not collide with existing ranges on the physical network.

Depending on the pod network type – overlay or routed – additional

steps have to be taken to advertise these IP blocks to the network or

publish services to the network.

Lifecycle Management
There are various tools to manage the lifecycle of a Kubernetes clus-

ter. Broadly speaking, there are tools for the deployment and lifecycle

management of clusters, and there are tools for interacting with a

cluster for day-to-day operations.

Let’s walk through a couple of the more popular tools:

Kubeadm
Kubeadm is the default way of bootstrapping a best-practice-com-

pliant cluster on existing infrastructure. Add-ons and networking

setup are both out of scope for Kubeadm, as well as provisioning the

underlying infrastructure.

Kubespray
Kubespray takes the configuration management approach, based

on Ansible playbooks. This is ideal for those already using Ansible

and who are comfortable with configuration management tooling.

Kubespray uses kubeadm under the hood.

MiniKube
MiniKube is one of the more popular ways of trying out Kubernetes

locally. The tool is a good starting point for taking first steps with

Kubernetes. It launches a single-node cluster inside a VM on your

local laptop. It runs on Windows, Linux and MacOS, and has a

dashboard.

D eploying K ubernetes
 3 5

Kops
Kops allows you to control the full Kubernetes cluster lifecycle, from

infrastructure provisioning to cluster deletion. It’s mainly for de-

ploying on AWS, but support for GCE and VMware vSphere is coming.

Various cloud vendors use their own proprietary tools for deploying

and managing cluster lifecycle. These are delivered as part of the

managed Kubernetes service, and usually not surfaced up to the user.

Configuration and Add-ons
Add-ons extend the functionality of Kubernetes. They fall into three

main categories:

•	 Networking and network policy
These include addons that create and manage the lifecycle of net-

works, such as Calico (routed) and Flannel (VXLAN overlay)

•	 Service discovery
While Kube-DNS is still the default, CoreDNS will replace it,

starting with version 1.13, to do service discovery.

•	 User interface
The Kubernetes dashboard is an addon.

While the name addon suggests some of these are optional, in reality

many are required for a production-grade Kubernetes environment.

Choosing the most suitable network provider, like Flannel or Calico,

is crucial for integrating the cluster into the existing environment, be

it on-premises or in the cloud.

Although technically not an addon, Helm is considered a vital part of

a well-functioning Kubernetes cluster. Helm is the package manager

for Kubernetes. Helm Charts define, install and upgrade applications.

These application packages (Charts) package up the configuration

of containers, pods, and anything else for easy deployment on

Kubernetes.

D eploying K ubernetes
 3 6

Helm is used to find and install popular software packages and man-

age the lifecycle of those applications. It’s somewhat comparable to a

Docker Registry, only Helm charts might contain multiple containers

and Kubernetes-specific information, like pod specifications. Helm

includes a default repository for many software packages:

•	 Monitoring: SignalFX, NewRelic, DataDog, Sysdig, ELK-stack

(elasticsearch, logstash, kibana), Jaeger, Grafana, Fluentd,

Prometheus, Sensu

•	 Databases: CockroachDB, MariaDB, CouchDB, InfluxDB,

MongoDB, Percona, Microsoft SQL on Linux, PostgreSQL, MySQL

•	 Key/Value: etcd, Memcached, NATS, Redis

•	 Message Systems: Kafka, RabbitMQ

•	 CI/CD: Concourse CI, Artifactory, Jenkins, GitLab, Selenium,

SonarQube, Spinnaker

•	 Ingress and API Gateways: Istio, Traefik, Envoy, Kong

•	 Application and Web Servers: Nginx, Tomcat

•	 Content Management: WordPress, Joomla, Ghost, Media-Wiki,

Moodle, OwnCloud

•	 Storage: OpenEBS, Minio

There are unique Charts available for things like the games Minecraft

and Factorio, the smart home automation system Home Assistant,

and Ubiquiti’s wireless access point controller, UniFi SDN. Helm

makes the life of application developers easier by eliminating the

toil of finding, installing and managing the lifecycle of many popular

software packages.

CHAPTER 4

Putting Kubernetes
To Work

Giving Users Access
Kubernetes uses Role-based Access Control (RBAC) to regulate user

access to its resources by assigning roles to users (Figure 9). While

it’s possible to let all users log in using full administrator credentials,

most organizations will want to limit who has full access for security,

compliance and risk management reasons.

Kubernetes’ approach allows administrators to limit the number

of operations a user is allowed, as well as limit the scope of said

operations. In practical terms, this means users can be allowed or

disallowed access to resources in a namespace, as well as granular

control over who can change, delete or create resources.

RBAC in Kubernetes is based on three key concepts:

1.	 Verbs. This is a set of operations that can be executed on resourc-

es. There are many verbs, but they’re all Create, Read, Update, or

Delete (also known as CRUD).

2.	 Resources. These are the objects available on the clusters. They

are the pods, services, nodes, PersistentVolumes and other things

that make up Kubernetes.

3.	 Subjects: These are the objects (users, groups, processes) allowed

access to the API, based on Verbs and Resources.

P utting K ubernetes To W ork 3 8

These three concepts combine into giving a user permission to execute

certain operations on a set of resources by using Roles (which connects

API Resources and Verbs) and RoleBindings (connecting subjects like

users, groups and service accounts to Roles).

Users are authenticated using one or more authentication modes.

These include client certificates, passwords, and various tokens.

After this, each user action or request on the cluster is authorized

against the rules assigned to a user through roles.

There are two kinds of users: service accounts managed by Kubernetes,

and normal users. These normal users come from an identity store

outside Kubernetes.

This means that accessing Kubernetes with multiple users, or even

multiple roles, is something that needs to be carefully thought out.

Which identity source will you use? Which access control mode most

suits you? Which attributes or roles should you define?

For larger deployments, it’s become standard to give each app a

dedicated service account and launch the app with it. Ideally, each

app would run in a dedicated namespace, as it’s fairly easy to assign

roles to namespaces.

Subjects API Resources Operations
(Verbs)

Developer Developer

ConfigMaps

Pod Service AutoScaler

Secrets

list

get

create
watch

delete

patch

Deployment

PV ReplicaSets
Ingress

Namespace

CronJob
Job

PVC

DaemonSet

Nodes

Administrator Administrator

OS Process Process in Pod

Figure 9: The type of Role Based Access Control used by Kubernetes.

P utting K ubernetes To W ork 3 9

Kubernetes does lend itself to securing namespaces, granting only

permissions where needed so users don’t see resources in their au-

thorized namespace for isolation. It also limits resource creation to

specific namespaces, and applies quotas.

Many organizations take this one step further and lock down ac-

cess even more, so only tooling in their CI/CD pipeline can access

Kubernetes, via service accounts. This locks out real, actual humans, as

they’re expected to interact with Kubernetes clusters only indirectly.

Monitoring and Ensuring Cluster Health
The easiest way of manually checking your cluster after deployment

is via the Kubernetes Dashboard,2 shown in Figure 10. This is the

default dashboard and is usually included in new clusters.

The dashboard gives a graphical overview of resource usage, name-

spaces, nodes, volumes, and pods. The dashboard provides a quick and

2 https://github.com/kubernetes/dashboard

Figure 10: The Kubernetes Dashboard.

https://github.com/kubernetes/dashboard

P utting K ubernetes To W ork 4 0

easy way to display information about the cluster. Because of its ease

of use, it’s usually the first step in a health check.

You can also use the dashboard to deploy applications, troubleshoot

deployments and manage cluster resources. It can fetch an overview

of applications running on your cluster, as well as create or mod-

ify individual Kubernetes resources. For example, you can scale a

deployment, initiate a rolling update, restart a pod, or deploy new

applications using a wizard.

The dashboard also provides information on the state of Kubernetes

resources in your cluster, and any errors that may have occurred.

After deployment, it’s wise to run standard conformance tests to

make sure your cluster has been deployed and configured properly.

The standard tool for these tests is Sonobuoy.

Clusters running as part of a service in the public cloud, like Amazon

EKS, Google GKE or Azure AKS, will benefit from the managed service

aspect: the cloud provider takes care of the monitoring and issue

mitigation within the Kubernetes cluster. An example is Google’s

Cloud Monitoring service.

Monitoring and Ensuring Application
Health
Most real-world Kubernetes deployments feature native, full metrics

solutions. Generally speaking, there are two main categories to mon-

itor: the cluster itself, and the pods running on top.

For cluster monitoring, the goal is to monitor the health of the

Kubernetes cluster, nodes, and resource utilization across the cluster.

Because the performance of this infrastructure dictates your applica-

tion performance, it’s a critical area.

Monitoring tools look at infrastructure telemetry: compute, storage,

and network. They look at (potential) bottlenecks in the infrastructure,

P utting K ubernetes To W ork 4 1

such as processor and memory usage, or disk and network I/O. These

resources are an important part of your monitoring strategy, as

they’re limited to the capacity procured, and costly to expand.

There’s another important reason to study these metrics: they define

the behavior of the infrastructure on which the applications run, and

they can serve as an early warning sign of potential issues. Should

issues be identified, you can mitigate the issue before applications

dependent on that infrastructure are impacted.

Pod monitoring is slightly more complex. Not only do you want to

correlate metrics from Kubernetes with container metrics, you also

want application metrics. This requires a metrics and monitoring

solution that hooks into all layers, and possibly into layers outside of

the Kubernetes cluster.

As applications become more complex and distributed across multiple

services, pods and containers, monitoring tools need to be aware of

the taxonomy of applications, and understand dependencies between

services and the business context in which they operate.

Figure 11: The DataDog Dashboard for Kubernetes.

P utting K ubernetes To W ork 4 2

This is where solutions like DataDog (Figure 11), NewRelic and

AppDynamics come in. While these are proprietary solutions, they

cover the whole stack: from infrastructure, Kubernetes and contain-

ers, to application tracing. This provides a complete picture of an

application, as well as transactional traces across the entire system

for monitoring of the end-user experience.

These complete solutions offer a unified metrics and monitoring

experience and include rich dashboarding and alerting feature sets.

Often, these products include default dashboard visualizations for

monitoring Kubernetes, encompassing many standard integrations

with components in the application stack to monitor up and down.

An open source metrics solution is Prometheus (Figure 12), which

can natively monitor the clusters, nodes, pods, and other Kubernetes

objects. It’s easily deployed via kube-prometheus, which includes

AlertManager for alerting, Grafana (Figure 13) for dashboards, and

Prometheus rules combined with documentation and scripts. It

provides an easy to operate, end-to-end Kubernetes cluster moni-

toring solution.

Figure 12: Prometheus Targets for Kubernetes.

P utting K ubernetes To W ork 4 3

This stack initially monitors the Kubernetes cluster, so it’s pre-con-

figured to collect metrics from all Kubernetes components. It also

delivers a default set of dashboards and alerting rules. But it’s easily

extended to target multiple other metric APIs to monitor end-to-end

application chains.

Prometheus can monitor custom application code and has inte-

grations with many database systems, messaging systems, storage

systems, public cloud services, and logging systems. It automatically

discovers new services running on Kubernetes.

But collecting metrics is just part of the puzzle. In a microservices

landscape, we need to observe behavior across the multitude of mi-

croservices to get a better understanding of the application’s perfor-

mance. For this reason, we need both tracing and logging (Figure 14).

For centralized log aggregation, there are numerous options. The

default option is Fluentd, a sister project of Kubernetes. On top of

that, transactional tracing systems like Jaeger give insights into the

user experience as they traverse the microservice landscape.

Figure 13: The Grafana Dashboard for Kubernetes. https://itnext.io/kuberne-
tes-monitoring-with-prometheus-in-15-minutes-8e54d1de2e13

https://itnext.io/kubernetes-monitoring-with-prometheus-in-15-minutes-8e54d1de2e13
https://itnext.io/kubernetes-monitoring-with-prometheus-in-15-minutes-8e54d1de2e13

P utting K ubernetes To W ork 4 4

Persistent Storage
Managing storage in production is traditionally one of the most

complex and time-consuming administrative tasks. Kubernetes

simplifies this by separating supply and demand.

Admins make existing, physical storage and cloud storage envi-

ronments alike available using PersistentVolumes. Developers can

consume these resources using Claims, without any intervention of

the admins at development or deploy time. This makes the developer

experience much smoother and less dependent on the admin, who in

turn is freed up from responding ad-hoc to developer requests.

= Observability

Monitoring

Visualization Tracing

Logging
+

+

++

Figure 14: The elements of observability.

CHAPTER 5

Managed Kubernetes
Solutions
Running Kubernetes is still a lot of work, and requires deep domain

expertise. More importantly, it takes time to design, implement and

get into production. While the benefits of Kubernetes are massive,

managing Kubernetes isn’t just set-it-and-forget-it.

Every business must give thought to the buy vs. rent paradigm. It

comes down to evaluating cost and risk, and judging whether they’re

outweighed by the advantages of a particular solution.

Building your own Kubernetes deployment is daunting. The con-

sequences of making the wrong choices are long-lasting, and can

impact application availability, performance, and agility. While

building a solution in-house may be cheaper, your design might be

of lesser quality or have flaws that will only be realized once you’re

in production.

And really, what is the business problem you’re trying to solve with

Kubernetes? It probably has to do with developer velocity, creating

flow and reducing the work in progress. Having a sub-optimal plat-

form will hurt those goals.

This is the true value of a managed service: making sure the ser-

vice delivered is top-notch. The service provider makes sure their

Kubernetes environment is highly available, resilient, flexible, up-

to-date, secure, and efficient. Their job is to remove the toil and

hassles of Kubernetes.

M anaged K ubernetes S olutions 4 6

Focus on Moving the Business Forward
While installing and managing Kubernetes doesn’t move the busi-

ness forward, quickly deploying new applications and versions to

customers does. To developers – Kubernetes’ end users – platform

availability is the key. They don’t care who builds it or how it gets

there: they just want to get their hands on it, and for it to work well.

But although developers don’t care about the implementation details

of a cluster or its operational state, someone still has to do the opera-

tional work to make sure the cluster is up to date, healthy, and secure.

A large part of that work consists of jobs like node lifecycle manage-

ment, deploying new hosts, and making sure the hosts are kept up

to date with the latest OS patches and container runtime versions.

Setting up a monitoring solution to keep an eye on Kubernetes in-

frastructure is notoriously difficult, and troubleshooting issues that

arise is even more so. This can result in a huge time sink for admins

and other infrastructure specialists, keeping them from helping

developers solve their problems.

Simplifying Open Source
These reasons make it clear that for many organizations, a managed

Kubernetes solution is the best option. The turnkey aspect of the ser-

vice enables organizations to start working with an ecosystem of open

source tools, like Kubernetes, quickly and securely.

Because for many organizations, it’s not just Kubernetes. Efforts usu-

ally also include Jenkins and other CI/CD tools, a suite of observability

tools for logging, metrics, tracing and dashboards, various databases

and key/value stores, pub/sub message queueing systems, and more.

Setting all these up before a developer can start using the ecosystem

simply takes too much time, and can overwhelm an IT department.

M anaged K ubernetes S olutions 4 7

They need help from domain experts. Hiring outside consultants

only partially solves this issue, as responsibility for any future work

doesn’t shift. With a managed service, on the other hand, it does.

Choosing a Managed Kubernetes
Solution
It’s important to choose a solution that solves these specific

challenges:

•	 Deployment time
Deploying a Kubernetes Control Plane is a piece of cake for the

MSP. Plugging in your various environments should be easy,

quick and frictionless.

•	 Monitoring and troubleshooting
Any issues in the environment should be surfaced and resolved

automatically (where possible). For issues where manual inter-

vention is needed, alerts should go out to the customer.

•	 Ongoing operations for upgrades and fixes
Managing Kubernetes is their specialty. That means the provider

does the ongoing management and operations of the control

plane, as well as the nodes. Upgrading Kubernetes versions and

keeping the nodes up to date should be an invisible and smooth

background process.

The Importance of ‘As-a-Service’ and SLAs
The risk of outsourcing a part of your infrastructure is sub-par

quality from the MSP. Making sure the provider keeps up their end

of the deal, which is to provide a highly-available, secure and per-

formant Kubernetes control plane, is key for a successful Kubernetes

deployment.

This is why a service is preferred over a software product. A prod-

uct still needs to be installed, configured, and maintained by the

M anaged K ubernetes S olutions 4 8

customer; a service is a much more hands-off experience, with ser-

vice-level agreements (SLAs) in place to offer and maintain a suitable

service level.

Truly Multi-cloud and Hybrid Cloud
Public cloud has caught developers’ attention. They love the flexi-

bility with which they can provision a new VM, container, key/value

store or pub/sub message queue.

The downside is paying those public cloud bills. Even though public

cloud is great, not everything must, or can, run in that environment

for financial or data governance reasons. This means that the man-

aged Kubernetes solution needs to be able to manage nodes across

on-premises and public cloud boundaries.

Seamless Support for Other Workload Types
Containers solve a set of specific problems, but they’re not a sil-

ver bullet for everything. In most IT shops, there’s still a need for

physical infrastructure and VMs, as well as higher-level abstractions

like serverless. There’s also a plethora of services that offer ready-

to-go functionality that you wouldn’t want to develop in-house, like

mass-messaging via SMS or e-mail.

Kubernetes has a place inside this broader ecosystem, but has to

seamlessly support VMs, serverless computing and third-party

services. It’s critically important that the managed Kubernetes pro-

vider doesn’t force you to use their services for VMs, serverless or

third-party services.

CHAPTER 6

Top Use Cases
Kubernetes has gained popularity for a number of use cases, given

its unique features. It’s a suitable platform to run stateless, 12-factor

apps, and is easy to integrate into CI/CD pipelines due to its open API.

(Note also that there are many use cases and tutorials beyond the

ones detailed here, available at the Kubernetes website.3)

Simple Deployment of Stateless
Applications
A very popular stateless app to run on top of Kubernetes is nginx, the

open source web server. Running nginx on Kubernetes requires a de-

ployment YAML file that describes the pod and underlying containers.

Here’s an example of a deployment.yaml for nginx:

3 https://kubernetes.io/docs/tutorials/

apiVersion: apps/v1 # for versions before 1.9.0 use
apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods
matching the template
 template:
 metadata:
 labels:
 app: nginx
 spec:

Top U se C ases
 5 0

Create this deployment on a cluster based on the YAML file:

The code creates two pods, each running a single container:

While manually creating these deployment files and creating pods is

helpful for learning Kubernetes, it isn’t the easiest way.

An easier way to deploy the same nginx application is to use the

Kubernetes package manager, Helm. Using Helm, the deployment

looks like this:

Deploying an app like this is easy; in the example, we skipped over

the harder parts, like exposing the web server outside of the cluster,

and adding storage to the pod.

And this is where Kubernetes is both a little complex to get started,

as well as explicit about separation of services and functionality.

For example, if we were to add a database connection to this nginx

pod to store data for a WordPress-based website, here’s how that

would work.

kubectl apply -f https://k8s.io/examples/application/
deployment.yaml

helm install docs/examples/nginx

NAME READY STATUS RESTARTS AGE
nginx-deployment-1771418926-7o5ns 1/1 Running 0 16h
nginx-deployment-1771418926-r18az 1/1 Running 0 16h

 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Top U se C ases
 5 1

First, we’d need to add a service, to make the database (running

outside of the Kubernetes cluster for now) available for consump-

tion in pods:

Since the database doesn’t run on the cluster, we don’t need to add

any pod selectors. Kubernetes doesn’t know where to route the traf-

fic, so we need to create an endpoint to instruct Kubernetes where to

send traffic from this service.

Within the WordPress configuration, you can now add the MySQL

database using the metadata name from the example above,

external-mysql-service .

Determining what components your app uses before deployment

makes it easier to separate them into separate containers in a sin-

gle pod, or different pods; even different services, external or on

Kubernetes. This separation helps in fully using all of Kubernetes’

features like horizontal auto-scaling and self-healing, which only

works well if the pods adhere to the rules and assumptions Kubernetes

makes about data persistence.

kind: Service
apiVersion: v1
metadata:
 name: external-mysql-service
Spec:
 type: ClusterIP
 ports:
 - port: 3306
 targetPort: 3306
selector: {}

kind: Endpoints
apiVersion: v1
metadata:
 name: external-mysql-service
subsets:
 - addresses:
 - ip: 10.240.0.4
 ports:
 - port: 3306

Top U se C ases
 5 2

Deploy Stateful Data Services
In the previous example, we assumed that the MySQL instance ran

outside of Kubernetes. What if we want to put it under Kubernetes’

control and run it as a pod?

The StatefulSet pod type and a PersistentVolume help with this. Let’s

look at an example:

apiVersion: v1
kind: Service
metadata:
 name: mysql-on-kubernetes
spec:
 ports:
 - port: 3306
 selector:
 app: mysql
 clusterIP: None

apiVersion: apps/v1 # for versions before 1.9.0 use
apps/v1beta2
kind: Deployment
metadata:
 name: mysql-on-kubernetes
spec:
 selector:
 matchLabels:
 app: mysql
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 # Use secret in real usage
 - name: MYSQL_ROOT_PASSWORD
 value: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage

Top U se C ases
 5 3

The file defines a volume mount for /var/lib/mysql, and then creates

a PersistentVolumeClaim that looks for a 20GB volume. This claim is

satisfied by any existing volume that meets the requirements, or by

a dynamic provisioner.

This means we need to create a PersistentVolume that satisfies

the claim:

kind: PersistentVolume
apiVersion: v1
metadata:
 name: mysql-pv-volume
 labels:
 type: local
spec:
 storageClassName: manual
 capacity:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: “/mnt/data”

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

Top U se C ases
 5 4

Using the same data structure and the same tools, it’s possible to

create services on the platform with persistent storage. While it’s a

little extra work to re-platform data services like databases onto the

Kubernetes platform, it does make sense.

With such a clear separation between application binaries, config-

uration and data in the Kubernetes layers, and a distinct separation

between a container and the underlying OS, many of the lifecycle

issues of the VM world disappear. Managing the lifecycle for these

applications is traditionally very hard, a lot of work, and, not unusu-

ally, requires downtime.

With Kubernetes, by contrast, a new version of the application can be

deployed by deploying a new pod (with the new container version) to

production. As this only switches the container, and doesn’t need to

include the underlying OS and higher-level configuration and data,

this is a very fast and lightweight operation.

CI/CD Platform with Kubernetes
Kubernetes’ open API brings many advantages to developers. The

level of control means developers can integrate Kubernetes into their

automated CI/CD workflow effortlessly. So even while Kubernetes

doesn’t provide any CI/CD features out of the box, it’s very easy to

add Kubernetes to a CI/CD pipeline.

Let’s look at Jenkins, the popular CI solution. Running Jenkins as a pod

is easy, by deploying it via the Kubernetes package manager, Helm.

The more interesting part is driving Kubernetes from within Jenkins.

This uses a plugin in Jenkins that allows Jenkins to dynamically

provision a Jenkins Agent on Kubernetes to run a single build. These

agents even have a ready-to-go Jenkins-slave Docker image.

$ helm install --name my-release stable/jenkins

Top U se C ases
 5 5

This setup allows developers to automate their pipeline: each new

code commit on git triggers a container build (which is built using

the Jenkins Agent) and subsequently pushed to Kubernetes to replace

the old version of the app in question for a rolling upgrade. (There’s a

more detailed explanation available as well.4)

4 https://betsol.com/2018/11/devops-using-jenkins-docker-and-kubernetes/

https://betsol.com/2018/11/devops-using-jenkins-docker-and-kubernetes/

CHAPTER 7

Platform9 Managed
Kubernetes
Platform9 Managed Kubernetes (PMK) is the industry’s only SaaS-

based, continuously managed Kubernetes service that guarantees

24x7x365 SLA and works across any infrastructure: on-premises

data centers, public clouds, and at the edge.

PMK provides comprehensive Day-Two operations for Kuberne-

tes production clusters, with guaranteed 99.9% uptime avail-

ability. PMK’s management plane performs around-the-clock,

Figure 15: Managed Kubernetes Overview

P lat f orm 9 M anaged K ubernetes 5 7

automated, real-time monitoring and anomaly detection.

Alerts are automatically generated, which trigger automated trouble-

shooting and remediation processes.

Platform9 provides the industry’s leading zero-touch upgrade pro-

cess and instant security patching. Their certified Kubernetes experts

provide expert guidance on best practices and architecture, and are

available 24x7 to perform proactive remediation to guarantee uptime

availability.

PMK’s simple-to-use self-service portal allows developers and op-

erations teams to deploy multi-cluster Kubernetes in under 20 min-

utes, on any infrastructure, with a simple wizard. Administrators can

centrally manage clusters on different cloud providers and data cen-

ters via the dashboard (Figure 16). Developers can connect to their

clusters through the UI or the built-in CLI accessible from the portal.

You can also access your Kubernetes dashboard with a single click.

Developers can deploy application templates or related services and

processes via the App Catalog.

Figure 16: The Platform9 dashboard.

P lat f orm 9 M anaged K ubernetes 5 8

Getting Started with Platform9 Managed
Kubernetes
The simple prep process makes it quick and easy to get a cluster

up and running. For on-premises deployments, adding nodes is a

matter of pushing the Platform9 agent to the machines. For cloud-

based deployments, this step is automated.

A simple graphical wizard helps first-time users make the right

choices, with clear explanations for options like running workloads

on master nodes, the container and service CIDR IP Blocks, privileged

mode, and more (Figure 17).

Platform9 deliberately chose an upstream, open source version of

Kubernetes for its deployment and operations. Being CNCF certified

also means that applications written for and tested on Platform9

Managed Kubernetes will run on any other open source-certified

Kubernetes, promoting portability and avoiding lock-in to propri-

etary distributions.

Figure 17: Creating a new Kubernetes cluster.

P lat f orm 9 M anaged K ubernetes 5 9

Built-in Application Catalog
Platform9 Managed Kubernetes has a built-in application catalog

(Figure 18) with hundreds of applications from the Kubernetes

community. It comes with the Fission repository for easy deploy-

ment of Fission – Platform9’s serverless framework – onto the

Kubernetes platform.

Figure 18: The Platform9 App Catalog.

Figure 19: Platform9’s Web CLI.

P lat f orm 9 M anaged K ubernetes 6 0

Web CLI
Platform9 Managed Kubernetes includes a Web-based CLI for simple

access to command-line tools like kubectl and Helm. You can see an

example of the CLI in Figure 19.

The CLI allows access to those tools in situations where there’s no

terminal available. It’s also accessible via mobile devices. This is

great for a quick fix of an issue, or for activities like checking cluster

and node health.

CHAPTER 8

The Big Decision
This Gorilla Guide has taken you on a journey through the depths of

Kubernetes, including its taxonomy, design decisions, and how to

deploy a production-grade Kubernetes cluster.

There’s no doubt that Kubernetes plays a vital role in the cloud-native

landscape: the advantages to the developer workflow are undeniable,

and its use cases are constantly expanding.

Still, deploying enterprise-grade Kubernetes is a daunting task,

with many variables and complex tasks, requiring highly specialized

knowledge. Using a managed solution like PMK makes deployment a

simple, five-minute task.

It includes all the best practices that make Kubernetes enter-

prise-ready, like a highly-available multi-master control plane and

integrated cluster monitoring. It allows managed operations like

automatic cluster upgrades, integrated identity and access manage-

ment, the Helm package manager and much more (See Figure 20).

Deployment
Minutes

Monitoring
included

Diagnostics
integrated

Versioning
As-a-service

Figure 20: The advantages of a Platform9 solution.

T he B ig D ecision
 6 2

Play in the Sandbox
It’s now time to take one of those use cases, or come up with your

own, to start with a managed Kubernetes deployment.

Platform9 offers a free sandbox with Kubernetes installed to get

started quickly and painlessly. The sandbox includes a guided walk-

through for SaaS-managed Kubernetes.

Alternatively, you can deploy your Kubernetes cluster on a public

cloud such as Amazon Web Services by supplying user credentials for

your public cloud environment.

If you’re not using containers yet, the question is why? The bene-

fits are massive, and an enterprise-grade management system like

Kubernetes makes it easier than ever.

If you’re ready to see what Kubernetes can do for you, visit Platform95

for more information, and start playing in your free sandbox.

5 https://platform9.com/managed-kubernetes/

https://platform9.com/managed-kubernetes/

	The Changing Development Landscape
	The Benefits of Creating Cloud Native Applications
	Why Kubernetes
	Developer Agility

	Kubernetes Concepts and Architecture
	Kubernetes Constructs and Concepts

	Deploying Kubernetes
	On-Premises Implementations
	Public Cloud
	Networking Concerns
	Lifecycle Management
	Configuration and Add-ons

	Putting Kubernetes To Work
	Giving Users Access
	Monitoring and Ensuring Cluster Health
	Monitoring and Ensuring Application Health
	Persistent Storage

	Managed Kubernetes Solutions
	Focus on Moving the Business Forward
	Simplifying Open Source
	Choosing a Managed Kubernetes Solution

	Top Use Cases
	Simple Deployment of Stateless Applications
	Deploy Stateful Data Services
	CI/CD Platform with Kubernetes

	Platform9 Managed Kubernetes
	Getting Started with Platform9 Managed Kubernetes
	Built-in Application Catalog
	Web CLI

	The Big Decision
	Play in the Sandbox

