
1BEST PRACTICES FOR SELECTING AND IMPLEMENTING YOUR SERVICE MESH

Best Practices
for Selecting and
Implementing Your
Service Mesh
Joep Piscaer

IN THIS PAPER

A service mesh can standardize and automate inter-service com-

munication. It helps you control traffic, security, permissions, and

observability in complex microservices landscapes.

In this tech brief, we’ll talk about the key to being successful with a

service mesh:

•	 Start your service mesh journey early to allow your service mesh

knowledge to grow organically as your microservices landscape

evolves, grows, and matures

•	 Avoid common design and implementation pitfalls due to lack

of knowledge

•	 Leverage your service mesh as the mission control of your multi-

cloud microservices landscape

1

CONTENTS
Why a Service Mesh?� 2

Reducing Service Mesh Complexity� 3

The Service Mesh Team� 3

The Service Mesh Catch-22� 3

HashiCorp Consul Connect� 4

Istio� 4

Linkerd� 5

A Service Mesh Choice Is Not Forever�5

Conquering Multi-Cloud� 5

Mission Control � 6

2BEST PRACTICES FOR SELECTING AND IMPLEMENTING YOUR SERVICE MESH

of load balancing, and adding security policies for com-

munication to and from the service by the outside world.

Because a service mesh has control over the network com-

munication between all services in the mesh, it unlocks

some advanced deployment and release strategies, such as

canary releases, blue/green releases, and rolling upgrades.

This improves the reliability of the services in production.

In some cases, the service mesh can react to changes in the

traffic patterns, adding circuit breakers and rate limiters

between services to prevent cascading failures. In order

for teams to gauge the performance and quality of each

release, a service mesh often has observability tooling (for

collecting telemetry and metrics, as well as building in

distributed tracing capabilities).

In short, a service mesh acts like an operational mission

control to determine the behavior of microservices at

scale, making sure the landscape of microservices is

communicating securely, and monitoring performance

and service quality. It removes much of the manual work

from the developer’s plate, so they need to focus only on

the business logic, not the network, security, and commu-

nication plumbing.

The result is not only higher quality in business logic code,

but also a reduction in variations and human errors in

the plumbing, by standardizing and automating much of

that work.

As applications are being broken down from monoliths

into microservices, the number of services making up an

application increases exponentially. And as anyone in IT

knows, managing a very large number of entities is no

trivial task.

Service meshes solve challenges caused by container

and service sprawl in a microservices architecture by

standardizing and automating communication between

services. A service mesh standardizes and automates

security (authentication, authorization, and end-to-end

encryption), service discovery and traffic routing, load

balancing, service failure recovery, and observability. Just

as virtualization abstracted the hardware layer of com-

puter systems and containers abstracted the operating

system, a service mesh abstracts away communication

within the network.

Why a Service Mesh?
As monoliths are pulled apart into their smallest con-

stituents, the resulting microservices are usually dis-

tributed across multiple systems and communicate over

HTTPS, so they become heavily dependent on network

communications.

A service mesh manages the network communications by

setting up standards and automating their implementa-

tion. It frees developers from defining and implementing

the communications for every service, over and over again

(see Figure 1).

This is much more scalable, more automated, and less

error-prone. The service mesh also improves security and

reliability by standardizing the interface between services.

The service mesh acts like an automatic walled garden for

each service on the network.

This is done by making sure other services know the ser-

vice exists (called “service discovery”), managing autho-

rization and authentication between services, taking care

Although a service mesh is very
useful to development teams,
implementing the service mesh
itself still takes some work.

Figure 1: Service mesh architecture

Microservice A

Microservices

Business CCC*

Microservice B

Business

Business

CCC*

CCC*

Microservice A

Microservices + Service Mesh

Business

Proxy
Config

Microservice B

Business

CCC*

Proxy

Data Plane

CCC*

*CCC = Cross Cutting Concerns

= Business Logic, Business Metrics

= Traffic Metrics, Routing, Retry, Timeout, Circuit Breaking,
 Encryption, Decryption, Authorization, ...

Metrics

Control
Plane

https://platform9.com/resource/tackling-observability-in-your-kubernetes-environment/

3BEST PRACTICES FOR SELECTING AND IMPLEMENTING YOUR SERVICE MESH

As you’ll see in the following sections, having a dedicated

team keep tabs on service mesh use cases (like multi-

cloud and heterogenous workloads) may save you from

an expensive, intrusive, and complex migration project

because reality got in the way.

The Service Mesh Catch-22
Choosing the right service mesh technology, and nailing

the implementation details, are crucial factors in your

service mesh success. But how do you make the right

decisions and do the right things when you don’t have the

right knowledge and experience yet? This is the catch-22

for the initial deployment and configuration of every new

technology, including a service mesh.

This is a common pitfall for organizations, as engineers

start designing and implementing a new technology

enthusiastically. The inefficiencies and sub-optimal deci-

sions due to lack of experience don’t immediately come to

light, but often surface only weeks, months, or even years

later, when it’s too late to drastically change anything.

How do you prevent these mistakes? And how do you

kickstart the learning process without the associated risk

and possibly massive impact down the road? Turning to a

simpler, less feature-rich alternative carries its own risk,

as you introduce a future point in time where your own

maturity outpaces the limited feature set, forcing you to

do a forklift upgrade of the mesh, introducing a migration

not only of the mesh itself, but a migration of all the mi-

croservices in the mesh, too.

Reducing Service Mesh
Complexity
Although a service mesh is very useful to development

teams, implementing the service mesh itself still takes

some work. Because there are many moving parts, a ser-

vice mesh leaves a lot of flexibility and room to customize

it to your specific needs. As always, flexibility comes at the

cost of complexity.

Balancing the features, functionality, and value of a

service mesh with its inherent complexity it is highly

challenging, and requires expertise, but is well worth the

effort. With an experienced team in place, organizations

can overcome the complexity associated with running a

service mesh at scale.

The best way to start developing the necessary skills and

experience is no different from any other technology: start

early, and start simple. You don’t need to acclerate from

0 to 60 miles per hour instantly. Instead, start small, and

incrementally add more features and functionality as you

build trust in the service mesh.

It’s recommended to start developing service mesh skills

in tandem with your microservices architecture, because

adding service mesh features to a relatively simple micro-

services architecture is much easier than when it’s already

complex and large. Let the service mesh grow organically

alongside your ever-evolving microservices architecture.

This keeps services secure and compliant, and helps

maintain visibility.

The Service Mesh Team
As your organization grows and your use of the service

mesh increases, it makes sense to create a dedicated team

focused on the continual improvement of the service

mesh, as well as helping application development teams

make the most of the features and functionality it offers.

The dedicated team owns the service mesh platform and

is responsible for the adoption of the service mesh across

application teams and the entire microservices landscape.

With this team structure, application development teams

can focus on building business logic and microservices.

Having a dedicated team keep
tabs on service mesh use
cases (like multi-cloud and
heterogenous workloads) may
save you from an expensive,
intrusive, and complex
migration project because
reality got in the way.

4BEST PRACTICES FOR SELECTING AND IMPLEMENTING YOUR SERVICE MESH

These sidecars handle the inbound and outbound TLS

connections, with the application completely agnostic of

Consul. Consul also has a native integration deployment

model. In Kubernetes environments, Consul uses a per-

host DaemonSet agent and Envoy sidecar proxies per

application that handles application traffic. Consul applies

a zero-trust security model, is platform agnostic, and

supports multi-cluster deployments.

As with other HashiCorp tools, Consul Connect is easy to

get started with. Its deployment and initial configuration

are a little less daunting than other options, making it a

good solution for those very new to the service mesh space.

ISTIO
Istio is the darling of the cloud-native space. Like many

projects before it, it was open sourced by an end-user

company (Lyft, in Istio’s case), as they built a solution to

handle complexity and scale.

Istio has seen massive adoption, especially as the basis of

various public cloud offerings.

Istio’s complexity is its downside for newcomers to the

field, but also what makes it so powerful; one example is

the addition of telemetry and analytics. As Figure 3 shows,

its architecture is much like Consul Connect.

A notable fact about Istio is that it is not part of the Cloud

Native Computing Foundation (CNCF) landscape map,

Instead, choosing the right mesh technology with the

end-goal in sight makes more sense. Currently, there are

three leading, mature options available in the Kubernetes

ecosystem: Consul Connect, Istio, and Linkerd.

While there are differences, all three are battle-tested,

production-ready, and enterprise-grade solutions. It’s a

matter of finding the right one given your unique context,

requirements, and goals.

Istio has the most functionality and flexibility, but is also

the most complex, making the first steps harder. Linkerd is

Kubernetes-only, making it easier to implement and use.

If you need to support virtual machines (VMs) alongside

Kubernetes, Consul is a good choice.

The paradox here is knowing which level of flexibility you

need a few years down the line when you have zero expe-

rience and expertise to make that decision now. Let’s dive

into an overview of these three options to start building a

picture of which one is right for your organization. This

will help you make the right decision and prevent obvious

pitfalls as you build trust and increase your service mesh

proficiency.

HASHICORP CONSUL CONNECT
Connect is Consul’s service mesh feature. It provides ser-

vice-to-service networking and security (authorization,

encryption). As seen in Figure 2, applications can use a

sidecar proxy deployment model.

Figure 2: Consul Connect in a sidecar proxy model

Service A Sidecar
Proxy

Service BSidecar
Proxy

Figure 3: The Istio architecture

Istio Mesh

Service A

Ingress
traffic

Data plane

Control plane

Proxy

Pilotistiod Citadel Galley

Service B

Proxy
Egress
traffic

Mesh
traffic

Discovery Configuration
Certificates

The paradox here is knowing
which level of flexibility you
need a few years down the line
when you have zero experience
and expertise to make that
decision now.

5BEST PRACTICES FOR SELECTING AND IMPLEMENTING YOUR SERVICE MESH

circumstances change, so your service mesh will need to

evolve, catering to those changes.

In some cases, a different technology is needed. If you’re

using the sidecar deployment model, applications and

microservices running as part of the mesh are not aware

of the mesh, nor do they have any special customization

or integration with any specific mesh. The sidecar model

makes it easier to migrate between technologies.

For more deeply integrated service mesh approaches,

the Service Mesh Interface, or SMI for short, may prove

useful. SMI offers a set of common, portable APIs that

provide developers with interoperability across different

service mesh technologies including Istio, Linkerd, and

Consul Connect.

Conquering Multi-Cloud
Reality is messy, and IT is no different. Migration from old

technologies to new ones is always happening, whether

from VMs to containers, from on-premises to public

cloud, or from one public cloud to another. What use is

a service mesh that helps you control traffic, security,

permissions, and observability when it works for only a

sub-set of workloads in just one environment?

Multi-cloud in a service mesh context means more

than just multiple public clouds. It also needs to support

on-premises deployments and support VMs. Last, the

service mesh should span all these environments and have

multi-cluster support.

This multi-cloud reality is often not explicitly designed

by the organization, but “just happens.” For instance, a

group of developers starts using yet another public cloud,

because it has the specific functionality they need to do

their work. Whatever the cause, making sure your service

mesh can handle this guarantees you can take a proactive

approach to supporting the endless variety of multi-cloud

scenarios in production. It gives you the piece of mind that

you’re in control of security in the untrusted world of pub-

lic cloud, and have visibility into the entire microservices

landscape.

even though it’s the most popular service mesh option for

the CNCF’s Kubernetes ecosystem.

LINKERD
Linkerd is the CNCF answer to a service mesh. Its v2 ar-

chitecture mimics Istio, but favors simplicity over features

and flexibility.

Where Consul and Istio work with Kubernetes and VMs,

Linkerd exclusively works on Kubernetes. This means its

architecture (Figure 4) has fewer moving parts and fits

into the Kubernetes architecture more seamlessly, with

deeper integration into many other CNCF projects like

Prometheus.

To get the full details, the Platform9 blog has a post called

“Kubernetes Service Mesh: A Comparison of Istio, Linkerd

and Consul.” It compares these three feature-by-feature.

A SERVICE MESH CHOICE IS
NOT FOREVER

Even though you should now have the knowledge to

make an initial choice, remember that requirements and

Figure 4: The Linkerd architecture

controller

prometheus

grafana

tap proxy-injector

sp-validator

linked-proxy

application

destination

identity

public-api

Control Plane

Data Plane

CLI

web

SMI offers a set of common,
portable APIs that provide
developers with interoperability
across different service mesh
technologies including Istio,
Linkerd, and Consul Connect.

https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/

6BEST PRACTICES FOR SELECTING AND IMPLEMENTING YOUR SERVICE MESH

In other words, if chosen correctly, a service mesh can

serve as an abstraction layer on top of the public cloud,

abstracting away the cloud and giving back control over

traffic, security, permissions, and observability in a multi-

cloud reality.

Looking at the three options shows that while Linkerd’s

simplicity sounds great on paper, reality may get in the

way, requiring you to use a service mesh technology that

works across containers and VMs. And again, SMI may help

you migrate service mesh technologies if you need to—ac-

cepting and acknowledging that reality is messy may save

you from a painful service mesh migration project.

Mission Control
That’s why it makes sense to select a service mesh that

doesn’t lock you into a single public cloud. Instead, choose

a cloud-agnostic service such as Platform9’s Managed

Kubernetes service, so that your service mesh can become

the mission control of your multi-cloud microservices

landscape—the place for troubleshooting issues, enforc-

ing traffic policies, controlling emergent behavior, and

releasing new code safely to limit the blast radius.

Multi-cloud in a service mesh
context means more than just
multiple public clouds. It also
needs to support on-premises
deployments and support VMs.

https://platform9.com/managed-kubernetes/
https://platform9.com/managed-kubernetes/

