
110 CONSIDERATIONS FOR RUNNING KUBERNETES AT SCALE

10 Considerations for
Running Kubernetes
at Scale

IN THIS PAPER
Kubernetes deployments can scale to support services and applica-

tions that run in a broad array of environments, from multi-cloud

deployments to resource-constrained edge computing environments.

But as businesses look to save money by optimizing infrastructural

resources, the process of deploying thousands of microservices

over geographically distributed servers can become increasingly

complicated.

If your company is considering a large-scale Kubernetes deployment,

the 10 considerations detailed in this paper is where you need to begin.

1

CONTENTS
Introduction 2

Scalability 2

Availability 2

Upgradability 3

Observability 3

Performance 4

Reliability 4

Supportability 4

Security 5

Compliance 5

Deployability 5

Planning for Kubernetes at Scale 5

210 CONSIDERATIONS FOR RUNNING KUBERNETES AT SCALE

CPU utilization for extended periods, the autoscaler will

add nodes. Similarly, if nodes become idle for some period

of time, they’re removed from the cluster. Adjusting the

number of nodes in a cluster is referred to as horizon-

tal scaling.

Another way to scale is to use servers with more resources.

For example, instead of deploying nodes with 16 CPUs and

96GB of memory, you could use nodes with 64 CPUs and

400GB of memory. This is called vertical scaling.

Scaling is an important consideration because it directly

impacts the availability of services. A resource-constrained

cluster doesn’t have the capacity to process additional

workloads. Over-provisioning is an option, but it’s a costly

one. A better approach is to ensure you’ve instrumented

the cluster so you can collect metrics about its state and

automatically respond to changing workloads.

AVAILABILITY
The formal definition of availability is the percentage of

time a system is ready for use. This way of thinking about

availability is useful when working with service-level

agreements (SLAs). It’s also an appropriate way to think of

availability from a user’s perspective—a system is avail-

able if they can use it. A developer’s perspective is slightly

different.

Developers have a more expansive view of availability. It

includes ensuring a production environment is function-

ing and able to meet the workload on the system at any

time. Developers also depend on development and test

environments being available to do their work. To ensure

developers have the necessary environments available

to them, it’s important to create repeatable processes for

deploying clusters and services.

INTRODUCTION

Kubernetes is designed to scale to distributed computing

platforms far larger than the systems many enterprises

use. Moreover, when you deploy thousands of microser-

vices over a large number of geographically distributed

servers that need to be available virtually all of the time,

operating that platform becomes increasingly complicat-

ed. Before you enter the world of large-scale Kubernetes

deployments, here are 10 considerations to keep in mind as

you plan your system.

SCALABILITY
Many engineers start working with Kubernetes by using

small clusters. A set of five nodes is sufficient to work

with Kubernetes services, get to know the commands, and

practice basic operations, like deploying new versions of

services and creating persistent storage volumes. While

this scale is well-suited for learning about Kubernetes or

supporting a small set of applications, it doesn’t manifest

the issues you’re likely to encounter when you start to run

hundreds of nodes in a cluster.

One of the issues with large deployments is scaling the

number of pods in a deployment or nodes in a cluster. In

the case of a small five-node cluster, if the workload in-

creases by 20%, you can manually add another node to the

cluster. You could keep the cluster at the increased size or

reduce the number of servers sometime in the future when

the load decreases. The disadvantage of this approach is

obvious. Manual intervention to scale resources isn’t a

viable option when working with large deployments and

dynamic workloads.

Kubernetes employs autoscaling to adjust the number of

nodes in a cluster. As the demands for computing resources

change, the autoscaler can increase or decrease the num-

ber of nodes. When nodes in the cluster are running at high

Manual intervention to scale
resources isn’t a viable option
when working with large
deployments and dynamic
workloads.

Figure 1: Horizontal vs. Vertical scaling of nodes

Vertical
Scaling

Horizontal
Scaling

310 CONSIDERATIONS FOR RUNNING KUBERNETES AT SCALE

unfortunate. To ensure a cluster is upgradeable, organi-

zations should plan for full lifecycle development. This

is challenging when working with Kubernetes, however,

because most organizations don’t have teams of experts,

and often have far fewer Kubernetes experts than needed.

As a result, production systems are difficult to upgrade

and, rather than risk disrupting services because of an issue

updating the platform, enterprises continue to run older

versions of Kubernetes. With a properly established CD

pipeline that allows for rollbacks, Blue-Green and Canary

deployments, enterprises can be more confident in upgrad-

ing to newer versions more frequently. This helps avoid

running significantly out-of-date versions of the platform.

To ensure upgradability, plan for it from the start of a

Kubernetes project. Often upgrades can lead to downtime

if not planned carefully. For high SLA and mission-crit-

ical applications, upgrades need to be designed to avoid

downtime, which is exceptionally difficult without ap-

propriate safeguards.

OBSERVABILITY
The more complex a system becomes, the more important

it is to be able to determine the state of that system at any

time. Observability is the term for this. Usually, when de-

velopers talk about observability, they’re referring to col-

lecting metrics, logs, and distributed traces from servers

and processes. These types of information are essential for

diagnosing and correcting problems.

For example, a pod in a Kubernetes cluster may be con-

stantly restarting. How would someone go about trou-

bleshooting this? They might look into problems with the

cluster, like the loss of a quorum or a problem on a single

node, such as no free disk space—and this problem is

compounded when dealing with multiple clusters running

in different locations and clouds. There are many possible

contributing factors to problems with cluster operations.

Curated dashboards showing key metrics can help de-

velopers and SREs focus on the most important pieces of

information.

Given the overwhelming number of metrics and logs that

could be observed, it helps to have experts identify which

to include in your dashboard. In fact, this principle applies

to all of the considerations outlined here.

The repeatable processes for developer environments

may be different from the repeatable processes used

in production environments. Site reliability engineers

(SREs), for example, may have a specific set of design

principles they apply to production environments. For

example, there may be different levels of health check-

ing, monitoring, and alerting. Service-level agreements

(SLAs) will likely be different, as well. Also, developers

will likely have different needs from SREs. For example,

developers shouldn’t have administrative access to a

production cluster, but they should have administrative

privileges to a cluster in their development environment,

rather than depend on others to configure and maintain it.

UPGRADABILITY
Kubernetes is under active development. To ensure

you have access to the latest features, you need to plan

for upgrading clusters. It’s easy to begin working with

Kubernetes and even run production workloads without

thinking about how you’ll upgrade the cluster.

Consider a typical scenario of how an enterprise might

start using Kubernetes. A group of developers and a busi-

ness sponsor decide to develop a proof of concept (PoC)

system on a small cluster. The developers want to show

results as fast as possible, so they choose the easiest in-

stallation method to get Kubernetes up and running. Next,

they incrementally add other services, such as a database,

which increases complexity to the overall system. Wanting

to show a realistic use case, the developers then deploy an

application. The PoC is well received and decision-makers

agree to make the service available in production.

Now, the developers of the PoC are faced with operation-

alizing a system that wasn’t designed for the demands of a

production environment. They’ll have to install monitor-

ing and logging tools. Of course, the business application

running in the cluster will need to be updated, so they’ll

have to integrate with a continuous integration/continu-

ous deployment (CI/CD) platform. As you can see, decisions

from choosing an installation method to integrating with a

CI/CD platform can’t be made in isolation.

This process continues with even more tools added to the

cluster, which essentially grows organically and incre-

mentally according to emerging requirements. This is

410 CONSIDERATIONS FOR RUNNING KUBERNETES AT SCALE

RELIABILITY

Reliability is a property of a system that’s closely related to

availability. The formal definition of reliability is a measure

that takes into account the mean time between failures and

the mean time to recovery.

Reliability in Kubernetes is determined by the ability of the

system to provide resources when needed and the ability

of systems software to function as expected. The ability

to scale resources up is especially important to reliability.

Being able to observe the state of a cluster and respond to

problems is also a significant factor for maintaining highly

reliable clusters and services.

SUPPORTABILITY
Kubernetes clusters, like any complex system, require suf-

ficient support to be maintained properly. Supportability is

a measure of how much effort is required to keep clusters

and services functioning.

Systems can be available and reliable, but only with human

intervention. Kubernetes is designed to minimize the need

for that intervention. For example, Kubernetes monitors

the status of pods and replaces them automatically when

they fail health checks.

In addition to the core Kubernetes components, sup-

portability encompasses other components that may be

deployed in a cluster. For example, a cluster that supports

the training and use of machine learning models may

support Kubeflow, a deployment manager for machine

learning. Supportability also needs to extend to services

that users will need in order to use Kubernetes effectively,

including Promoetheus, Fluentd, Istio, and Jeager.

When scaling up a Kubernetes cluster, consider how you’ll

continue to support existing services, as well as additional

services that may be needed in the future.

PERFORMANCE

When planning for Kubernetes at scale, consider how you’ll

maintain appropriate levels of performance. Specifically, is

your system able to meet compute, storage, and network

needs at any point in time? Think about performance at

both an application and a cluster level.

At the application level, deployments should be perfor-

mant. Deployments consist of multiple pods, so pods need

to be performant for the deployment to be performant. Of

course, with a sufficient number of pods, the deployment

can continue to meet the needs of workloads even if some

small number are not functioning as expected.

At the cluster level, you should consider how to maintain

the overall performance of a cluster. This is largely a factor

of how performant the nodes are, but other cluster-level

properties, such as how fast a cluster can autoscale, can

impact the overall performance of the system.

The geographic location of the cluster nodes that

Kubernetes manages is closely related to the latency that

clients experience. For example, nodes that host pods

located in Europe will have faster DNS resolve times and

lower latencies for customers in that region.

Naturally, it’s best to use container-optimized images so

that Kubernetes can pull them faster and run them more

efficiently.

What’s meant by being optimized is that they:

• Only contain one application or do one thing.

• Have small images, since big images aren’t so portable

over the network.

• Have endpoints for health and readiness checks so that

Kubernetes can take action in case of downtimes.

• Use a container-friendly OS (like Alpine or CoreOS) so

that they’re more resistant to misconfigurations.

• Use multistage builds so that only the compiled ap-

plication (and not the dev sources that come with it)

is deployed.

Lots of tools and services let you scan and optimize images

on the fly. It’s important to keep them up-to-date and

security-assessed at all times.

When scaling up a Kubernetes
cluster, consider how you’ll
continue to support existing
services, as well as additional
services that may be needed in
the future.

510 CONSIDERATIONS FOR RUNNING KUBERNETES AT SCALE

Also, consider where Kubernetes is deployed. Clusters

aren’t constrained by political boundaries. Know which

regulations you must comply with if a cluster is deployed in

multiple countries or in states with applicable regulations,

such as GDPR in the European Union and the California

Consumer Privacy Act in the United States.

DEPLOYABILITY
Kubernetes runs in a variety of environments. Some clus-

ters are deployed on-premises in a data center while others

are in a public cloud. Hybrid clouds are common, as well. At

the other end of the spectrum, Kubernetes may be deployed

to a point-of-presence system, such as those in retail

stores. IoT systems can benefit from computing resources

at the edge, which can be delivered using Kubernetes.

Consider how you’d deploy updates to Kubernetes in

these various environments. Is the process automatable?

How much human intervention is required to deploy

Kubernetes? If you plan to scale Kubernetes, you should

strive for zero-touch automated procedures.

PLANNING FOR KUBERNETES AT SCALE
Kubernetes deployments can scale to support services and

applications that run in a broad array of environments,

from multi-cloud deployments to resource-constrained

edge computing environments. As you plan for deploying

Kubernetes at scale, keep in mind the 10 considerations

outlined here to help improve the capabilities of your de-

ployments without sacrificing long-term scalability.

SECURITY

Security is always a consideration when deploying services.

As an administrator of Kubernetes clusters, you’ll need to

attend to multiple security mechanisms, including access

controls, encryption, and managing secrets.

Access controls depend on identity management. There

must be a way to represent users and service accounts

within the cluster. To streamline identity management,

users should be assigned to roles or groups that have per-

missions assigned to them. You should also consider how

you’ll enforce the principle of least privilege—granting

only the permissions a user needs to perform their job and

no more. In addition to these authorization considerations,

you’ll also need to deploy authentication methods that

support the way users employ the cluster.

Also, plan for how and when you’ll use encryption. Sensitive

and confidential information should be encrypted at rest,

as well as in transit.

You should plan to provide a mechanism for storing

secrets, such as database passwords and API keys.

Developers may be used to storing secrets in configuration

files and setting environment variables with those secret

values, but a centralized repository for managing secrets

is more secure.

COMPLIANCE
Closely related to security is compliance. As the size of

Kubernetes clusters grows, it becomes imperative to define

policies that allow you to meet regulatory requirements

with minimal manual intervention. Pay particular atten-

tion to audit policies and how they’re used to demonstrate

compliance.

As the size of Kubernetes clusters
grows, it becomes imperative to
define policies that allow you to
meet regulatory requirements
with minimal manual intervention.

	Introduction
	Scalability
	Availability
	Upgradability
	Observability
	Performance
	Reliability
	Supportability
	Security
	Compliance
	Deployability
	Planning for Kubernetes at Scale

