
• A Vendor-Neutral, Cloud-Agnostic
Approach to Managing Containers

• What a Managed Kubernetes
Service Is, and Advantages
of Using One

• The New Distributed Architecture:
Edge Computing

Inside the Guide

Kubernetes
Operations
Joep Piscaer

THE GORILLA GUIDE TO...

Copyright © 2021 by ActualTech Media

All rights reserved. This book or any portion thereof may not be reproduced or
used in any manner whatsoever without the express written permission of the
publisher except for the use of brief quotations in a book review. Printed in the
United States of America.

ACTUALTECH MEDIA
6650 Rivers Ave Ste 105 #22489
North Charleston, SC 29406-4829
www.actualtechmedia.com

Kubernetes Operations
Express Edition

By Joep Piscaer

PUBLISHER’S ACKNOWLEDGEMENTS

EDITOR
Keith Ward, ActualTech Media

PROJECT MANAGER
Wendy Hernandez, ActualTech Media

EXECUTIVE EDITOR
James Green, ActualTech Media

LAYOUT AND DESIGN
Olivia Thomson, ActualTech Media

WITH SPECIAL CONTRIBUTIONS FROM PLATFORM9:
Bic Le, Roopak Parikh, Kamesh Pemmaraju

Introduction: The Forgotten Innovation in
Kubernetes Deployments 8

Chapter 1: SaaS Managed Kubernetes: the
Effective DIY Alternative 11

Outsourcing Makes Sense—on the Surface 16

Focus on Business Outcomes 22

Chapter 2: Tackling Observability in Your
Kubernetes Environment 25

Types of Observability and Their Value 26

Layers of Monitoring 28

Making Observability Work for Your Business 30

Chapter 3: Best Practices for Selecting and
Implementing Your Service Mesh 36

Reducing Service Mesh Complexity 39

The Service Mesh Team 40

The Service Mesh Catch-22 41

A Service Mesh Choice Is Not Forever 47

Conquering Multi-Cloud 48

TABLE OF CONTENTS

Chapter 4: Distributed Edge with Managed
Kubernetes 50

A New Architecture for Responding to
Compute-Intensive Applications 52

Bandwidth and Compute Power in a
Distributed Architecture 53

Central Management Is Still Needed 56

Applying This Architecture to Retail,
Manufacturing, and SaaS 61

Solve Your Kubernetes-at-the-Edge Challenges 63

CALLOUTS USED IN THIS BOOK

The Gorilla is the professorial sort that en-
joys helping people learn. In the School
House callout, you’ll gain insight into topics
that may be outside the main subject but are
still important.

This is a special place where you can learn

a bit more about ancillary topics presented

in the book.

When we have a great thought, we ex-

press them through a series of grunts in

the Bright Idea section.

Takes you into the deep, dark depths of a

particular topic.

Discusses items of strategic interest to

business leaders.

ICONS USED IN THIS BOOK

DEFINITION
Defines a word, phrase, or concept.

KNOWLEDGE CHECK
Tests your knowledge of what you’ve read.

PAY AT TENTION
We want to make sure you see this!

GPS
We’ll help you navigate your knowledge
to the right place.

WATCH OUT!
Make sure you read this so you don’t
make a critical error!

TIP
A helpful piece of advice based on what
you’ve read.

INTRODUCTION

The Forgotten Innovation in
Kubernetes Deployments
The recently developed application architecture of con-
tainers, microservices, and cloud computing can deliv-
er immense benefits in terms of scalability, response
time, rapid innovation, and cost savings—but it makes
organizations rethink their strategy on many levels.
Your developers are thinking about how to modular-
ize feature development and conduct continuous in-
tegration. Your cloud and infrastructure operators are
thinking about how to use modern tools—especially
Kubernetes—to run these complex applications. But too
few companies apply creative thinking to tools and pro-
cesses that tie everything together.

Kubernetes, the industry-standard container orches-
tration tool, is powerful. It can do so much, including:
monitoring, upgrading, restoring, troubleshooting, se-
curity patching, logging, alerting, load balancing, ex-
ception handling, DNS services, and more.

K U B E R N E T E S O P E R AT I O N S 9

Whew! That’s a whole lot of functionality, but comes
at the cost of simplicity and ease of management.
Fortunately, there are solutions.

The Gorilla Guide To…® (Express Edition) Kubernetes
Operations illuminates three major areas of your
infrastructure that require standardization and
consolidation:

• Monitoring and observability

• A service mesh for communication

• Automated management and updates of multiple dis-
tributed locations

In each of these areas, you need one or a few modern
tools that meet your organization’s needs. Platform9
Managed Kubernetes (PMK) provides a unifying man-
agement system that can work across all your systems,
whether they’re on-premises, multiple cloud environ-
ments, or scattered to the edges of the network.

In this Gorilla Guide, you’ll learn where many compa-
nies go wrong and get trapped in suboptimal solutions
or miss out on the ability to manage their systems con-
sistently in all environments. You’ll see what each tool
contributes to solutions that guarantee performance
and up time without requiring heroic efforts from oper-
ations staff. And you’ll get a glimpse into computing on

K U B E R N E T E S O P E R AT I O N S 1 0

5G cell towers and other edge locations—a promising
new environment for highly responsive applications.
Rev up and take a tour!

CHAPTER 1

SaaS Managed Kubernetes: the
Effective DIY Alternative
Kubernetes is here to stay. But its operational com-
plexity is a major hurdle for many organizations, cre-
ating a barrier to entry that’s hard to solve: qualified
engineers are expensive, and DIY solutions have a long
lead time and are very complex.

This means organizations are missing out on the ad-
vantages that Kubernetes provides for development
teams, like accelerating software releases with more
control over the infrastructure to optimize perfor-
mance and cost.

This chapter helps you understand how to remove
complexity and decrease lead time for Kubernetes
using a cloud-agnostic, managed solution approach.

Kubernetes is a powerful infrastructure platform for
developers. Its self-service nature allows developers to
take control of releasing software to production with-
out the direct involvement of Ops teams. This helps
development teams increase their velocity, enabling
them to release more often and more quickly, with

K U B E R N E T E S O P E R AT I O N S 1 2

more control over the infrastructure than ever to opti-
mize cost, performance, and resilience.

The downside is increased complexity. With all of its
advantages when it’s up and running, Kubernetes
is notoriously hard to deploy and manage. Its open,
pluggable architecture is complicated and can be over-
whelming for those new to Kubernetes.

This creates high barriers to entry for Ops teams
wanting to design and implement production-grade
clusters that provide high resilience and good perfor-
mance at a reasonable cost.

In the architecture diagram in Figure 1, it becomes
clear that Kubernetes is a complex solution with many
moving and interchangeable parts.

Even after the initial learning curve is conquered, new
challenges await. Kubernetes clusters tend to have a
shorter lifespan than virtual infrastructure clusters,
and are often built for a very specific function, such
as a single application. This is especially true in envi-
ronments with ephemeral compute needs, like cloud
computing. Here, clusters here are constantly spun
down, recycled, and replaced by new clusters.

K U B E R N E T E S O P E R AT I O N S 1 3

Ctrl Plane - 1,2...n

Node 1

etcd

Cloud
Provider

Network Edge

controller
manager

kube
apiserver

scheduler

End Users

Pods

System Services

Container Runtime

kubelet

Node 2

Pods

System Services

Container Runtime

kubelet

Load
Balancer

kubectl

Figure 1: Kubernetes architecture is difficult to understand
and master

This poses major challenges in the way Ops teams
work, requiring new operational processes. It also
requires new technical skills, which use up team re-
sources that could have been better spent on other,
more business-focused initiatives.

K U B E R N E T E S O P E R AT I O N S 1 4

Kubernetes,
Microservices, and
Modern Development

The powerful benefit offered
by container technologies
such as Kubernetes is also
the source of the difficulties that containers present.
They’re part of an architecture for computer applica-
tions that combines:

• Multiple services, such as databases, that commu-
nicate by exposing APIs

• A microservice architecture, which is a modern form
of the classic programming practice of breaking
programs into independent modules

• Cloud deployment, which makes it easy to scale up
or down in response to demand

This type of architecture is becoming increasingly
popular for several reasons First, it allows a company
to spin up new instances—virtual representations of
a physical computer—as demand increases, such as if
it advertises a sale and thousands of people suddenly
visit its web site. The company saves money by termi-
nating those instances when the spike ends.

K U B E R N E T E S O P E R AT I O N S 1 5

Indeed, chances are that Ops teams are already
stretched thin, and putting in the time to master the
day-to-day chores of managing a cluster’s lifecycle
is simply another added burden. Ops is already busy
maintaining existing infrastructure, from WAN and
LAN networking, to virtual compute infrastructure,
client management systems, and many others.

The architecture is also fault-tolerant. If a physical
computer blows a fuse, you have to power up a new
computer. In a virtual or containerized environment,
you just press a button on the cloud provider’s graphi-
cal interface—or even better, run a monitoring system
to detect failures and to automatically launch new in-
stances through the cloud provider’s API.

Less obvious, but equally important, the containerized
architecture supports a faster, more distributed de-
velopment cycle. Programmers in different places can
work on different microservice components and indulge
in their own release cycles, without having to commu-
nicate frequently with the developers of other compo-
nents. Because many new features require changes to
only a single component, developers can keep the users
happy with fast-changing stream of new features, or
can react quickly to a change in the business model.

K U B E R N E T E S O P E R AT I O N S 1 6

Outsourcing Makes Sense—on the
Surface
It is therefore logical to outsource Kubernetes to a
managed services provider. Luckily, there are many
options to choose from, across a spectrum of different
types of solutions.

On one end of this spectrum are software distribu-
tions that provide a framework, but leave you alone to
figure out how it works. While better than rolling out
your own Kubernetes distribution, these options still
require you to do all of the heavy lifting yourself, and
don’t actually solve the problems outlined earlier.

The hyperscale public cloud vendors go one step fur-
ther, by offering these software distributions as an
easy-to-consume service. These services take care of
initial cluster deployment, using their own design best
practices and implementation tooling.

While saving massively on initial deployment lead
time, these solutions have a number of downsides.
Public cloud vendors’ service portfolios are designed
to lower the barriers for developers to start using ad-
ditional services, often without an upfront cost. It’s
an elegant, integrated portfolio of services that devel-
opers love.

1 7K U B E R N E T E S O P E R AT I O N S

Lock-in Blues

It’s not without its drawbacks, though—the biggest
one being vendor lock-in. These hyperscale public
cloud vendors have many services, and they’ll try to
persuade you to use their other services, as well. Lock-
in increases steadily, drawing you in as a customer
with each step.

While, operationally, the level of integration between
services and products is naturally very high, the
cost and the operational and strategic risk increase
exponentially.

Lock-in
Software vendors—and now
cloud providers—have de-
vised many barriers over the
years to leaving their offer-
ings. Some of the dangers of
lock-in are:

• The vendor going out of business, which means
stopping updates and bug fixes or (in the case of
cloud offerings) terminating all services. Customer
data can also be lost.

1 8K U B E R N E T E S O P E R AT I O N S 1 8

• More subtly, a change in the vendor’s plans and
priorities may take the product in a direction that
doesn’t help some of its own clients. They may find
that the product no longer offers the original value
they found in it, but that their data and processes are
trapped in it.

• Similarly, the vendor may decide to remove a fea-
ture that the client relies on. Perhaps the feature isn’t
important to the clients the vendor wants to attract.
Often, the vendor sees the feature as a hindrance to
selling some other services, and removes it to force
clients to spend more for a new service.

• Bugs of high priority to the client may be of low pri-
ority to the vendor, so they may go unfixed.

• Vendors have been known to raise prices so much
that they make the offering unaffordable to many
users. Sometimes they suddenly start charging high
prices, without warning, for offerings that were pre-
viously free of charge.

• Thus, professional administrators and operators are
wary of lock-in.

K U B E R N E T E S O P E R AT I O N S 1 9

The public cloud provider may lock you into using
their authentication, monitoring, or data services (like
databases and object storage). For instance, to use
their managed Kubernetes services, you have no alter-
native but to use their compute instances, block stor-
age service, and monitoring services, as well as their
authentication service. This lack of choice increases
the lock-in.

In the Kubernetes realm, another lock-in is more ob-
vious: the managed Kubernetes service often dictates
what compute instances can be used, in the sense that
you can only use their compute nodes. This can pre-
vent you from using a third-party service or bringing
your own compute.

And while technically there’s nothing wrong with
using their compute nodes as Kubernetes work-
er nodes, they do make up the vast majority of cloud
costs. And what happens if they alter their terms or
hike prices? If you’re locked in, you may feel you have
to accept these unwanted changes.

But maybe not. And that leads to an often-hidden, but
frustrating and expensive, issue—breaking the lock
and finding another provider can be incredibly frus-
trating. The time it takes to move away from a specific
public cloud service when locked into that ecosystem

K U B E R N E T E S O P E R AT I O N S 2 0

can take many months, and may have a significant
impact on your projects and budgets. Sometimes pro-
viding your own infrastructure is cheaper and offers
more agility.

While lock-in is often associated with the risk of cost
increases, the strategic risk of not being able to move
and adapt to changing circumstances in your business
could also be crippling, especially when the services
are used for customer-facing digital transforma-
tion projects.

This means a loss of agility in the marketplace, since
you’re no longer able to adjust requirements in re-
sponse to changing circumstances. That increases
your Total Cost of Ownership, or TCO, when using the
public cloud vendor’s entire service landscape.

Mitigating Risk

Intelligent planning demands that organizations con-
sider solutions that don’t have economic and opera-
tional lock-in, while still offering Kubernetes as a
service. The value proposition is clear: the enterprise
receives all the benefits, without the downside.

With SaaS, you’re essentially hiring the best consul-
tants to assist with the architecture design, config-
uration, and operational processes to optimize your

K U B E R N E T E S O P E R AT I O N S 2 1

Kubernetes environments for availability, resilience,
security, and cost. But you don’t pay the high price
of a specialized consultant. Instead, the SaaS provid-
er creates the automated workflows and the back-end
automation that allow hands-off initial deployment,
upgrades, monitoring, alerting and more. Since it’s all
done with software instead of labor-intensive manual
processes, it scales elegantly.

Smaller organizations simply can’t justify the cost
of a dedicated Operations team with the appropriate
Kubernetes knowledge and experience, which requires
expensive staff—nor can they run the risk of being
dependent on a single worker or a small number of
employees for their specific knowledge.

Instead, cloud-agnostic, managed Kubernetes ser-
vices, like Platform9 SaaS Managed Kubernetes ser-
vice (PMK), are indifferent to the location of your
Kubernetes cluster: on-premises, in a private or host-
ed cloud, across any of the public clouds, or in a com-
bination of all of these.

Workloads are moving increasingly to the network
edge. This dynamic creates hundreds or even thou-
sands of new locations. In that scenario, operation-
al overhead ramps up massively, leading to huge
management nightmares. But SaaS provides central

K U B E R N E T E S O P E R AT I O N S 2 2

management of those widely distributed clusters with
the simplicity of a single pane of glass console. That
means formerly labor-intensive operations like soft-
ware updates are as easy as the click of a button.

PMK offers quick onboarding to Kubernetes for devel-
opers, allowing them to use the service without any
re-training, and includes many of the moving parts
that usually accompany Kubernetes for monitoring,
logging, networking, and storage.

Focus on Business Outcomes
Managed Kubernetes services are invaluable in other
ways, too. Not only do they remove the operational
complexity of designing, implementing, and oper-
ating Kubernetes, they allow organizations to focus
their staff’s time on things that directly impact their
bottom line.

Instead of ITOps staff focusing on daily IT operations,
they will have time to spend on business projects,
which increasingly have an IT or tech component.

Thus, a managed Kubernetes platform has two key
advantages. First, your organization will have a proper
Kubernetes infrastructure, which is a driver for many
digital transformation, digitization, and e-commerce

K U B E R N E T E S O P E R AT I O N S 2 3

projects. It allows organizations to quickly devel-
op, release, and iteratively improve customer-facing
applications.

Second, freeing up IT staff from their day-to-day task
will accelerate those projects by adding invaluable tech
skills and experience into the mix, without having to
risk being pulled back into yet another operational fire
that needs their immediate and undivided attention.

Many companies underestimate this latter aspect of
using a managed Kubernetes service. Freeing up tech-
nical staff that know the organization’s technolo-
gy stack and all of its subtleties, technical debt, and
quirks can have a massive impact on the quality of the
software delivered as part of those innovative projects.

Improving Time-to-Value

In addition, using a managed Kubernetes service al-
lows organizations to hit the ground running. Instead
of slowing down a transformation project to hire the
right staff, design, install, and configure a Kubernetes
environment, a managed Kubernetes service helps
speed up projects by decreasing lead time for the tech-
nical aspects of building a Kubernetes environment.

This newly unencumbered IT staff can be the differ-
ence between a successful digital transformation and

K U B E R N E T E S O P E R AT I O N S 2 4

a failed one. IT staff have a crucial role in non-func-
tional aspects. While functional characteristics define
specific behavior and functionality, non-functional
aspects define qualitative aspects of a system, includ-
ing stability, availability, resilience, security, perfor-
mance, manageability, upgradeability, cost, and more.
With IT staff safeguarding those attributes, these proj-
ects will deliver a better end result, and more quickly.

Now that we’ve examined the value of a dedicated
service to manage your containers, we’ll look at what
such a service offers. The first of such a service is to
monitor what’s going on so you know when there are
problems. Thus, monitoring and observability are the
topics of the next chapter.

CHAPTER 2

Tackling Observability in Your
Kubernetes Environment

We’re on our way to discovering a robust and ven-
dor-neutral way to manage Kubernetes instances. In
this chapter we look at the foundation of manage-
ment: monitoring.

There are many tools in the cloud-native and micro-
services tool chest. Kubernetes is the go-to for con-
tainer management, giving organizations superpowers
for running container applications at scale. However,
running an enterprise-grade, production-lev-
el Kubernetes deployment is more than running just
Kubernetes by itself.

Because containers are ephemeral and transient,
monitoring, security, and data protection are funda-
mentally different from their counterparts in virtual-
ized or bare metal applications. Optimizing the tooling
that supports a Kubernetes deployment is not a trivial
task. In many cases, this means that tooling aimed at
virtualized environments doesn’t translate well into
containerized platforms. Replacing these tools may be
better than retrofitting legacy tooling.

K U B E R N E T E S O P E R AT I O N S 2 6

In fact, more modern tooling created to support con-
tainer environments may help you get the most out
of your container platform. In this chapter, we’ll look
at how to optimize observability in your Kubernetes
environment. We’ll define the types of observabili-
ty, offer a path for starting and expanding the pro-
cess, and describe the advantages of cloud-based or
Software as a Service (SaaS) monitoring.

Types of Observability and Their
Value
Let’s go back to basics first. Looking at the observabili-
ty space for container-based microservices landscapes,
we can distinguish three separate types of tooling:

1. Monitoring (or metrics): collecting operational te-
lemetry about applications, application services,
middleware, databases, operating systems, and vir-
tual or physical machines

2. Logging: collecting error messages, debug or stack
traces, and more detailed messages

3. Tracing: collecting user transactions and perfor-
mance data across a single or distributed system

K U B E R N E T E S O P E R AT I O N S 2 7

In a DevOps or Site Reliability Engineering (SRE)
world, these three disciplines collectively make up
observability.

Each discipline provides valuable insights in all layers
of the layer cake that make up the increasingly com-
plex application and infrastructure landscape of con-
tainers. DevOps engineers and SREs use the insights
from these tools to improve resilience and perfor-
mance, as well as triage errors, fix bugs, and improve
availability and reliability.

Finally, they use these tools to gauge how users are
interacting with the system. The tools help figure
out which functionality visitors use or don’t use, and
where performance bottlenecks lie.

KUBERNETES

Watch the Platform9 webinar on how
Kubernetes has transformed monitoring.
Another great resource to check out is the
Platform9 blog, “Logging & Monitoring of
Kubernetes Applications: Requirements &
Recommended Toolset.”

https://platform9.com/resource/how-has-kubernetes-transformed-monitoring/thank-you/
https://platform9.com/blog/logging-monitoring-of-kubernetes-applications-requirements-recommended-toolset/

K U B E R N E T E S O P E R AT I O N S 2 8

As application landscapes expand due to digital trans-
formation, the number of microservices and individ-
ual containers explodes, making it harder to see the
inner workings of systems. So, it shouldn’t be a sur-
prise that executing a good observability strategy is
one of the deciding factors of a successful Kubernetes
deployment.

While enterprise IT is more important than ever, digi-
tal transformation has led many more organizations to
create digital and online applications. IT has often be-
come a critical business function, vital for the survival
of your business.

Layers of Monitoring
A good place to start with monitoring is by collecting
metrics and operational telemetry of the Kubernetes
constructs like clusters and pods, as well as collect-
ing metrics on resource usage like CPU, memory, net-
working, and storage. Starting with the bottom two
layers (see Figure 2) for monitoring is relatively easy
and a good way of becoming comfortable with observ-
ability tooling.

Infrastructure monitoring and logging are key capa-
bilities because it’s important to know the activities of
your physical infrastructure. A substantial amount of

K U B E R N E T E S O P E R AT I O N S 2 9

Figure 2: An application layer cake with monitoring examples

ApplicationBusiness Domain

Core 4 Resources: CPU, Memory,
Disk, Network

Kubernetes Pods, & Services

Per-Container Resource Usage

No. of Transactions & Errors

Revenue, Basket Value
Application Domain

ContainersKubernetes Pods, Services, etc.

Physical & Operating System

your application’s performance and resilience comes
from correctly functioning servers and networking.

As the application landscape expands, a well-execut-
ed infrastructure monitoring and logging strategy also
builds a shared understanding of application perfor-
mance across teams, preventing miscommunication
between application development, cloud platform, and
other teams.

Visibility into infrastructure and the shared under-
standing it builds is crucial, but of course doesn’t give

K U B E R N E T E S O P E R AT I O N S 3 0

the entire picture. For that, you need to move up the
stack, and start with application performance moni-
toring (APM). For many organizations, the application
monitoring journey starts with monitoring (or met-
rics collection) and logging containerized workloads.
For Kubernetes-based environments, there are nat-
ural combinations to start with, like the open source
Fluentd and Prometheus, which make it easier to run
monitoring and logging.

Making Observability Work for
Your Business
To gain benefits from observability, you need to think
about your business requirements over the next few
years and choose a platform that meets your needs.
This section describes how to think about require-
ments, tools, and the IT organization.

Align Monitoring to Business Objectives

This chapter has presented a natural progression of
how teams use observability, starting with the in-
frastructure basics, working their way up the stack
into the realm of applications, and even tracing users
across the application landscape, monitoring their be-
havior and transactions.

K U B E R N E T E S O P E R AT I O N S 3 1

This journey up the stack is an opportunity to align
monitoring, logging, and tracing to business objec-
tives, mining more insights from the increased visi-
bility. It allows teams to gain visibility into more than
just technical metrics, generating business-oriented
metrics, too.

By measuring business-oriented metrics (such as
the dollar value of the shopping basket, the num-
ber of abandoned baskets, and metrics on popular or
even disused features), product owners can align de-
velopment priorities to what their users really want,
optimize performance in areas where it actually mat-
ters, and fix technical debt to accommodate further
growth. Naturally, these insights fuel business growth
and revenue.

When tooling is aligned to the business and customer
experience, the tools can be used by more than just IT
teams, allowing business teams to gain insights into
their applications and its users.

Think Mid-Term to Long-Term

The tools you choose for observability should serve
your needs for several years. This requires you to
think about how your business is changing and how
that will change your observability requirements in
the long-term.

K U B E R N E T E S O P E R AT I O N S 3 2

The cost of migrating to a new, more capable APM
platform can be significant, but won’t immediately
give you additional functionality. This additional func-
tionality requires additional engineering and imple-
mentation before these capabilities are fully unlocked.

And let’s not forget that moving to another APM plat-
form requires you to retrain staff and needs time to
regain confidence in the metrics and insights, all of
which reduce the value the APM platform brings in
the short term. So, it makes sense to choose your
tooling wisely from the start, keeping the long-term
goals in mind.

In other words, while you won’t need the most com-
plex or feature-rich solution now, look at what fea-
tures you’ll need to support evolving requirements in
the future. Invest in your team and people and start
with the APM capabilities you need now. You don’t
need to enable, implement, and incorporate every fea-
ture the tooling provides from the get-go. It’s OK to
start simple, build up confidence along the way, con-
tinuously evolve your knowledge of the tool, and ex-
pand its use in-sync with changing requirements.

K U B E R N E T E S O P E R AT I O N S 3 3

The Observability
Platform Team

As your organization grows
and your use of metrics be-
comes commonplace, it
makes sense to create a ded-
icated team focused on the continual improvement of
the observability platform, and help application devel-
opment teams gather the metrics that matter to them.

The dedicated team owns the platform and executes
an observability strategy across many applications and
teams. The observability platform team’s expertise
speeds up troubleshooting, helps with application ar-
chitecture optimization and can help teams to quickly
pinpoint and solve bottlenecks and fragile areas prone
to failure.

With their expertise and knowledge of the environ-
ment, they can “travel” from application team to ap-
plication team to grow each team’s knowledge and
expertise more efficiently, preventing re-inventing
the wheel and other local optimizations within each
team, instead letting all teams learn from the collec-
tive knowledge, driving up maturity more quickly.

K U B E R N E T E S O P E R AT I O N S 3 4

Cloud-Based Observability (SaaS)
If your teams are busy setting up and managing serv-
ers, they’ll be less effective at their real job: improving
the usage of APM across the organization. By adopting
a SaaS offering, the observability platform team can
focus on the functional side of observability instead
of the day-to-day toil of managing and operating the
platform.

That means they’re not bogged down with installing
yet another security patch or forced to think about
scaling the observability platform. Instead, they have
more time to help application development teams with
their observability challenges or to improve the plat-
form itself.

SaaS also helps an organization get started with an
observability platform. Instead of having to make the

With this team structure, the application teams can
focus on gathering metrics, refining the metrics they
collect, and improving the signal-to-noise ratio in-
herent in gathering metrics, so the telemetry gathered
is optimally serving business objectives and the team
isn’t spending any time on managing or operating the
observability platform.

K U B E R N E T E S O P E R AT I O N S 3 5

hard design choices at the start of a project (with little
to no experience), you can use the choices offered by
the SaaS vendor, confident that its experts have vetted
the choices.

Using a SaaS service lets the vendor take on the op-
erational burden of upgrades, scalability, and perfor-
mance for the APM software, freeing up your team to
work on broader and deeper implementation of APM
across application teams.

This will speed up the pace at which your observabil-
ity platform matures, allowing teams to gain a deeper
and more user-oriented understanding of the applica-
tion landscape more quickly. This increases the value
of the investments made in the observability space in
two ways: You spend less time installing, configuring,
and getting started with the tooling, and the insights
gained from the tooling can be applied more quickly to
optimizing revenue and fueling growth.

In effect, you can leapfrog your APM journey, skip-
ping the traditionally hard first steps in getting start-
ed with monitoring.

This chapter laid out the essential role of monitoring
in the management of Kubernetes clusters. In the next
chapter, we turn to the networks on which you run
your Kubernetes containers.

CHAPTER 3

Best Practices for Selecting
and Implementing Your
Service Mesh
As applications are being broken down from monoliths
into microservices, the number of services making up
an application increases exponentially. And as anyone
in IT knows, managing a very large number of entities
is no trivial task.

Service meshes solve challenges caused by contain-
er and service sprawl in a microservices architecture
by standardizing and automating communication be-
tween services. A service mesh standardizes and au-
tomates security (authentication, authorization, and
end-to-end encryption), service discovery and traf-
fic routing, load balancing, service failure recovery,
and observability. Just as virtualization abstracted the
hardware layer of computer systems and containers
abstracted the operating system, a service mesh ab-
stracts away communication within the network.

https://platform9.com/resource/tackling-observability-in-your-kubernetes-environment/

K U B E R N E T E S O P E R AT I O N S 3 7

Why a Service Mesh?

As monoliths are pulled apart
into their smallest constitu-
ents, the resulting microser-
vices are usually distributed
across multiple systems and
communicate over HTTPS, so they become heavily de-
pendent on network communications.

A service mesh manages the network communications
by setting up standards and automating their imple-
mentation. It frees developers from defining and im-
plementing the communications for every service, over
and over again (see Figure A).

Figure A: Service mesh architecture

Microservice A

Microservices

Business CCC*

Microservice B

Business

Business

CCC*

CCC*

Microservice A

Microservices + Service Mesh

Business

Proxy
Config

Microservice B

Business

CCC*

Proxy

Data Plane

CCC*

*CCC = Cross Cutting Concerns

= Business Logic, Business Metrics

= Traffic Metrics, Routing, Retry, Timeout, Circuit Breaking,
 Encryption, Decryption, Authorization, ...

Metrics

Control
Plane

K U B E R N E T E S O P E R AT I O N S 3 8

This is much more scalable, more automated, and less
error-prone. The service mesh also improves security
and reliability by standardizing the interface between
services. The service mesh acts like an automatic
walled garden for each service on the network.

This is done by making sure other services know the
service exists (called “service discovery”), managing
authorization and authentication between services,
taking care of load balancing, and adding security pol-
icies for communication to and from the service by the
outside world.

Because a service mesh has control over the network
communication between all services in the mesh, it
unlocks some advanced deployment and release strat-
egies, such as canary releases, blue/green releases, and
rolling upgrades.

This improves the reliability of the services in pro-
duction. In some cases, the service mesh can react to
changes in the traffic patterns, adding circuit breakers
and rate limiters between services to prevent cascading
failures. In order for teams to gauge the performance
and quality of each release, a service mesh often has ob-
servability tooling (for collecting telemetry and metrics,
as well as building in distributed tracing capabilities).

K U B E R N E T E S O P E R AT I O N S 3 9

Reducing Service Mesh
Complexity
Although a service mesh is very useful to development
teams, implementing the service mesh itself still takes
some work. Because there are many moving parts, a
service mesh leaves a lot of flexibility and room to cus-
tomize it to your specific needs. As always, flexibility
comes at the cost of complexity.

Balancing the features, functionality, and value of a
service mesh with its inherent complexity it is highly

In short, a service mesh acts like an operational mis-
sion control to determine the behavior of microservices
at scale, making sure the landscape of microservices is
communicating securely, and monitoring performance
and service quality. It removes much of the manual
work from the developer’s plate, so they need to focus
only on the business logic, not the network, security,
and communication plumbing.

The result is not only higher quality in business logic
code, but also a reduction in variations and human er-
rors in the plumbing, by standardizing and automat-
ing much of that work.

K U B E R N E T E S O P E R AT I O N S 4 0

challenging, and requires expertise, but is well worth
the effort. With an experienced team in place, organi-
zations can overcome the complexity associated with
running a service mesh at scale.

The best way to start developing the necessary skills
and experience is no different from any other tech-
nology: start early, and start simple. You don’t need
to accelerate from 0 to 60 miles per hour instantly.
Instead, start small, and incrementally add more fea-
tures and functionality as you build trust in the ser-
vice mesh.

It’s recommended to start developing service mesh
skills in tandem with your microservices architecture,
because adding service mesh features to a relatively
simple microservices architecture is much easier than
when it’s already complex and large. Let the service
mesh grow organically alongside your ever-evolving
microservices architecture. This keeps services secure
and compliant, and helps maintain visibility.

The Service Mesh Team
As your organization grows and your use of the ser-
vice mesh increases, it makes sense to create a dedi-
cated team focused on the continual improvement
of the service mesh, as well as helping application

K U B E R N E T E S O P E R AT I O N S 4 1

development teams make the most of the features and
functionality it offers.

The dedicated team owns the service mesh platform
and is responsible for the adoption of the service mesh
across application teams and the entire microservices
landscape. With this team structure, application devel-
opment teams can focus on building business logic and
microservices.

As you’ll see in the following sections, having a dedicat-
ed team keep tabs on service mesh use cases (like multi-
cloud and heterogenous workloads) may save you from
an expensive, intrusive, and complex migration project
because reality got in the way.

The Service Mesh Catch-22
Choosing the right service mesh technology, and nail-
ing the implementation details, are crucial factors in
your service mesh success. But how do you make the
right decisions and do the right things when you don’t
have the right knowledge and experience yet? This
is the catch-22 for the initial deployment and con-
figuration of every new technology, including a ser-
vice mesh.

This is a common pitfall for organizations, as engineers
start designing and implementing a new technology

K U B E R N E T E S O P E R AT I O N S 4 2

enthusiastically. The inefficiencies and sub-optimal
decisions due to lack of experience don’t immediately
come to light, but often surface only weeks, months,
or even years later, when it’s too late to drastically
change anything.

How do you prevent these mistakes? And how do you
kickstart the learning process without the associat-
ed risk and possibly massive impact down the road?
Turning to a simpler, less feature-rich alternative
carries its own risk, as you introduce a future point in
time where your own maturity outpaces the limited
feature set, forcing you to do a forklift upgrade of the
mesh, introducing a migration not only of the mesh
itself, but a migration of all the microservices in the
mesh, too.

Instead, choosing the right mesh technology with
the end-goal in sight makes more sense. Currently,
there are three leading, mature options available in
the Kubernetes ecosystem: Consul Connect, Istio,
and Linkerd.

While there are differences, all three are battle-tested,
production-ready, and enterprise-grade solutions. It’s
a matter of finding the right one given your unique con-
text, requirements, and goals.

K U B E R N E T E S O P E R AT I O N S 4 3

Istio has the most functionality and flexibility, but is
also the most complex, making the first steps harder.
Linkerd is Kubernetes-only, making it easier to imple-
ment and use. If you need to support virtual machines
(VMs) alongside Kubernetes, Consul is a good choice.

The paradox here is knowing which level of flexibil-
ity you need a few years down the line when you have
zero experience and expertise to make that decision
now. Let’s dive into an overview of these three options
to start building a picture of which one is right for your
organization. This will help you make the right decision
and prevent obvious pitfalls as you build trust and in-
crease your service mesh proficiency.

HashiCorp Consul Connect

Connect is Consul’s service mesh feature. It provides
service-to-service networking and security (authoriza-
tion, encryption). As seen in Figure 3, applications can
use a sidecar proxy deployment model.

These sidecars handle the inbound and outbound TLS
connections, with the application completely agnos-
tic of Consul. Consul also has a native integration de-
ployment model. In Kubernetes environments, Consul
uses a per-host DaemonSet agent and Envoy sidecar
proxies per application that handles application traffic.

K U B E R N E T E S O P E R AT I O N S 4 4

Consul applies a zero-trust security model, is platform
agnostic, and supports multi-cluster deployments.

As with other HashiCorp tools, Consul Connect is easy
to get started with. Its deployment and initial config-
uration are a little less daunting than other options,
making it a good solution for those very new to the ser-
vice mesh space.

Istio

Istio is the darling of the cloud-native space. Like many
projects before it, it was open sourced by an end-user
company (Lyft, in Istio’s case), as they built a solution
to handle complexity and scale.

Istio has seen massive adoption, especially as the basis
of various public cloud offerings.

Istio’s complexity is its downside for newcomers to the
field, but also what makes it so powerful; one example

Figure 3: Consul Connect in a sidecar proxy model

Service A Sidecar
Proxy

Service BSidecar
Proxy

K U B E R N E T E S O P E R AT I O N S 4 5

is the addition of telemetry and analytics. As Figure 4
shows, its architecture is much like Consul Connect.

A notable fact about Istio is that it is not part of the
Cloud Native Computing Foundation (CNCF) landscape
map, even though it’s the most popular service mesh
option for the CNCF’s Kubernetes ecosystem.

Figure 4: The Istio architecture

Istio Mesh

Service A

Ingress
traffic

Data plane

Control plane

Proxy

Pilotistiod Citadel Galley

Service B

Proxy
Egress
traffic

Mesh
traffic

Discovery Configuration
Certificates

K U B E R N E T E S O P E R AT I O N S 4 6

Linkerd

Linkerd is the CNCF answer to a service mesh (see
Figure 5). Its v2 architecture mimics Istio, but favors
simplicity over features and flexibility.

Where Consul and Istio work with Kubernetes and VMs,
Linkerd exclusively works on Kubernetes. This means
its architecture has fewer moving parts and fits into
the Kubernetes architecture more seamlessly, with
deeper integration into many other CNCF projects like
Prometheus.

Figure 5: The Linkerd architecture

controller

prometheus

grafana

tap proxy-injector

sp-validator

linked-proxy

application

destination

identity

public-api

Control Plane

Data Plane

CLI

web

K U B E R N E T E S O P E R AT I O N S 4 7

To get the full details, the Platform9 blog has a post
called “Kubernetes Service Mesh: A Comparison of
Istio, Linkerd and Consul.” It compares these three
feature-by-feature.

A Service Mesh Choice Is Not
Forever
Even though you should now have the knowledge to
make an initial choice, remember that requirements
and circumstances change, so your service mesh will
need to evolve, catering to those changes.

In some cases, a different technology is needed. If
you’re using the sidecar deployment model, applica-
tions and microservices running as part of the mesh
are not aware of the mesh, nor do they have any special
customization or integration with any specific mesh.
The sidecar model makes it easier to migrate between
technologies.

For more deeply integrated service mesh approaches,
the Service Mesh Interface, or SMI for short, may prove
useful. SMI offers a set of common, portable APIs that
provide developers with interoperability across differ-
ent service mesh technologies including Istio, Linkerd,
and Consul Connect.

https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://cloudblogs.microsoft.com/opensource/2019/05/21/service-mesh-interface-smi-release/

K U B E R N E T E S O P E R AT I O N S 4 8

Conquering Multi-Cloud
Reality is messy, and IT is no different. Migration from
old technologies to new ones is always happening,
whether from VMs to containers, from on-premis-
es to public cloud, or from one public cloud to anoth-
er. What use is a service mesh that helps you control
traffic, security, permissions, and observability when
it works for only a sub-set of workloads in just one
environment?

Multi-cloud in a service mesh context means more
than just multiple public clouds. It also needs to support
on-premises deployments and support VMs. Last, the
service mesh should span all these environments and
have multi-cluster support.

This multi-cloud reality is often not explicitly designed
by the organization, but “just happens.” For instance,
a group of developers starts using yet another public
cloud, because it has the specific functionality they need
to do their work. Whatever the cause, making sure your
service mesh can handle this guarantees you can take
a proactive approach to supporting the endless variety
of multi-cloud scenarios in production. It gives you the
piece of mind that you’re in control of security in the
untrusted world of public cloud, and have visibility into
the entire microservices landscape.

K U B E R N E T E S O P E R AT I O N S 4 9

In other words, if chosen correctly, a service mesh can
serve as an abstraction layer on top of the public cloud,
abstracting away the cloud and giving back control over
traffic, security, permissions, and observability in a
multi-cloud reality.

Looking at the three options shows that while
Linkerd’s simplicity sounds great on paper, reality
may get in the way, requiring you to use a service mesh
technology that works across containers and VMs. And
again, SMI may help you migrate service mesh tech-
nologies if you need to—accepting and acknowledging
that reality is messy may save you from a painful ser-
vice mesh migration project.

With the tools we’ve described in the first two chap-
ters of this guide, you can set up a robust architecture
for your applications. But where should you actually run
those systems? In the final chapter we’ll look at a prom-
ising new environment for highly responsive contain-
erized applications.

CHAPTER 4

Distributed Edge with
Managed Kubernetes

This guide has laid out a strategy that can run in any
modern environment, including multiple third-party
clouds. This chapter presents a high-performance en-
vironment that has evolved recently, part of a move-
ment known as edge computing.

EDGE COMPUTING

As Internet speeds grew and SaaS services
became popular, applications moved a
lot of their intelligence into the cloud. The
popularity of mobile devices with limited
storage and compute power accelerates
this trend toward centralizing most process-
ing in a remote hub. But for performance
reasons, application developers are trying
to do more processing with local data in
the device itself, or in a cell or local system
located near the device. This is called edge
computing.

K U B E R N E T E S O P E R AT I O N S 5 1

Each generation of networking presents unique chal-
lenges that are met by unique solutions. Current ap-
plication architectures connect small computers at the
edge—mobile apps, Internet of Things (IoT) devices,
retail point-of-sale systems, and so forth—with hubs
in the cloud. These environments are characterized by:

• Compute-intensive requests sent by mobile devices
into the cloud, where a vendor is expected to handle
the requests and return results quickly

• Cellular networks to handle most requests

• Modular, scalable worker nodes that handle requests
and are controlled by Kubernetes, the most popu-
lar tool currently for distributing requests across
worker nodes

This network architecture calls on companies host-
ing applications to place worker sites on network end-
points, so they can quickly accept requests from mobile
device users, calculate the answers to the requests, and
return them to the mobile devices.

K U B E R N E T E S O P E R AT I O N S 5 2

A New Architecture for
Responding to Compute-Intensive
Applications
During the past 10 to 15 years, companies have gotten
used to accepting data from mobile users or edge devic-
es into a centralized data center. This data center run by
the company owning the app determines the proper re-
sponse and returns it to the edge.

But this simple model has turned out to be inadequate
for delivering the performance needed as the complex-
ity of calculations grows. Cellular networks, especial-
ly those employing some form of 5G, have alleviated

RUNNING COMPUTATIONS IN
CELL TOWERS

Don’t cell towers contain just radios and
antennae? Nowadays, towers are building
in compute power for their clients, includ-
ing GPUs. They offer this compute power
so that applications can run close to the
clients instead of in far-away data centers,
saving time and network costs.

https://ubuntu.com/blog/edge-ai-in-a-5g-world-part-1-how-smart-cell-towers-will-change-our-lives

K U B E R N E T E S O P E R AT I O N S 5 3

bandwidth limitations between the cellular tower and
the edge, whether the edge is an end user on a mobile
device or an IoT device reporting conditions in the field.
But a significant bottleneck remains between the cell
tower and the company’s systems.

A new architecture has therefore developed, based on
distributing the work to intelligent systems at the col-
lection points provided by enterprises. Much of the in-
formation and work is never seen by the sites run by app
developers. Instead, enterprise companies launch local
containers to handle requests. Kubernetes instances are
also launched at the endpoints to start up and monitor
worker processes.

This chapter describes the new architecture and how to
take advantage of it to offer applications that respond
gracefully to user requests or reports from devices in
the field.

Bandwidth and Compute Power in
a Distributed Architecture
Edge computing brings compute power closer to the end
users and their devices, essentially decentralizing some
of the compute capabilities of centralized public cloud
offerings.

K U B E R N E T E S O P E R AT I O N S 5 4

Recent developments in connectivity, such as the in-
creased bandwidth of 5G networks, have increased the
opportunities for communication between edge loca-
tions and end users. This increase in connectivity allows
an enormous growth of data and unlocks many new use
cases, from image and video processing and voice rec-
ognition to running factories and retail locations over
5G instead of Wi-Fi. Fast response time is critical in the
new applications. Mobile users are impatient, and IoT
devices must make real-time decisions.

While the connection between the end user and the edge
location enjoys ample bandwidth, responses from the
centralized cloud or data center can’t keep up in speed.
Edge locations in many cases are remote and have lim-
ited connectivity, but require complex processing for
huge amounts of locally generated data. That in turn
creates an architectural challenge to bring compute re-
sources where they can exploit the increases in band-
width at the edge.

A Distributed Architecture Tailored to
Kubernetes for the Edge
Transporting data from the edge to the central cloud
or core data center for processing doesn’t make sense,
especially if there’s a large amount of data to be trans-
ferred and fast response times are required. Processing

K U B E R N E T E S O P E R AT I O N S 5 5

at the edge is more cost-effective. In this architecture
an edge location, such as a 5G radio tower, runs one or
more clusters of worker nodes. The edge location sends
only processed data that’s useful for business-related
analytics to the central repository.

This new architecture processes data close to where it’s
generated, with a few core data centers or cloud regions
acting as the brains of the operation.

In this scenario, the edge locations themselves need
sophisticated task management for thousands of si-
multaneous processes that are set up and torn down
quickly. Kubernetes is the current industry standard for
this kind of process management. That means starting
up Kubernetes worker nodes at the edge locations to
run the data processing applications locally. By running
only the absolutely necessary workloads at the edge,
companies can reduce costs associated with maintain-
ing centralized data centers and transferring data from
the edge.

Application providers are now dealing with hundreds to
thousands of edge locations, or even more. With an ar-
chitecture that requires less hardware at the edge, sav-
ings scale linearly with the number of edge locations.

Of course, this concept applies to more than just da-
ta-processing applications. 5G, as well as faster and

K U B E R N E T E S O P E R AT I O N S 5 6

more cost-effective endpoints (consumer and indus-
trial IoT devices alike), are creating new use cases that
generate far more data than ever before, such as video
feeds from CCTV systems, telemetry information from
industrial IoT devices, and interactions generated by
apps and games on consumer phones.

Central Management Is Still
Needed
Although the modern, distributed applications de-
scribed in this chapter process data at the edge, ap-
plication providers still need central control and
visibility into the processing. Platform9 Managed
Kubernetes (PMK) delivers Software-as-a-Service
(SaaS) Kubernetes cluster management and simplic-
ity of operations like native public cloud services but
using upstream open source stacks that are deployed
and operated on a wide range of on-premises (VMware,
bare metal), public cloud(s) (AWS and Azure), and edge
infrastructures.

The federated, distributed architecture of PMK provides
a consistent experience across regions, while being
centrally managed and resilient against connectivity
and bandwidth issues. The architecture supports multi-
ple regions in a hub-and-spoke model. Figure 6 shows
an overview of the federated architecture supported by

K U B E R N E T E S O P E R AT I O N S 5 7

PMK. Multiple regions work independently. Each man-
agement plane region acts as the central hub and brains
of a region. The management plane defines policies for
all the edge processors, with the federation of configu-
ration templates and apps.

The management plane is where DevOps engineers
manage the entire operation. There, they store con-
tainer images and inventory caches of remote locations.
Synchronization ensures eventual consistency to re-
gional and edge locations automatically, regardless of
the number of locations.

Figure 6: Distributed Edge Platform overview

Qbert Local reg.

Remote clusters

Remote clusters

PMK management plane -
Region 1

PMK management plane -
Region 2

Central Registry & App catalog

Inventory Svc

Profile based cluster deployment

Federated
regions

Registry, Inv.
Sync

Platform9 Mgmt
traffic

Core Data Centers/Cloud

K U B E R N E T E S O P E R AT I O N S 5 8

Profile-Based Management

Platform9 facilitates the scaling of edge computing
to thousands of edge data centers by grouping them
so that similar data centers can be managed centrally
through a single policy known as a profile. This relieves
IT staff from managing each data center individually.
Instead, the staff just defines a small number of profiles
and indicates exceptions to policies where needed for a
particular data center. Each edge location, such as radio
towers, warehouses, and retail locations, runs its own
worker nodes and containers.

Profile-based cluster management makes it easier to
deploy identical remote clusters and configurations,
from a single profile, instead of managing each remote
cluster separately. That minimizes configuration drift,
while still being able to apply unique configurations
where needed.

This feature helps standardize application and contain-
er deployment across clusters, making the onboarding
of new edge regions easy and consistent. This allows
the day-to-day operations work to scale non-linear-
ly, making the most of each engineer’s time. The fea-
ture allows administrators to manage a large number of
edge locations without additional work.

K U B E R N E T E S O P E R AT I O N S 5 9

As you saw in Figure 6, the “core” registries and cat-
alogues are synced with remote locations, which cache
this information to reduce bandwidth and remove any
connectivity dependencies they might have to the core
data centers.

As a result, deploying and scaling applications at the
edge isn’t dependent on the core data centers, but can
be handled locally while still receiving periodic poli-
cy-based changes to keep configurations consistent and
in sync with the centrally defined policies.

The architecture deep dive in Figure 7 shows the entire
architecture, from endpoints to core data centers. We’ll
dive into each area of this diagram in the next sections.

Figure 7: Distributed Edge Platform deep dive

PMK management plane -
Region 2

Federated
regions

IoT/edge
devices

Devices Edge Locations Local/Regional
Data Centers

Core Data Centers/Cloud

worker(s) at
edge location

K8s Clusters at Remote locations KubeVirt

K8s masters

Site-registry and
apps cache Central Registry &

App catalog
Profile based

cluster deployment

Inventory Svc Qbert

worker(s) at
edge location

worker(s) at
edge location

Calico nw policies &
encryption

Server mesh for
inter-cluster comms

~2 km

pods Pods & VMs

Registry, Inv.
Sync

Platform9 Mgmt
traffic

Pods & VMs

K8s clusters (core)

PMK management plane -
Region 1

Inventory svc stores a cache
of the objects: pods, svc etc.
for better visibility

Registry for apps,
cluster components
can be optionally
synced with other
registries for availibility

Profile based system
makes it easier to create
similar looking ‘remote’
clusters along with apps
deployed on them

K U B E R N E T E S O P E R AT I O N S 6 0

Core Data Centers Are the Brains of
the Operation

The core data centers run the management plane, cen-
tral container registry, and App Catalog, as well as in-
ventory services and policy-based deployment and
configuration tools for cluster management.

The profile-based system makes it easier to create
identical remote clusters and to deploy applications to
remote clusters consistently, keeping configuration
drift to a minimum and ensuring maximum application
compatibility.

Core data centers are federated across regions for con-
sistent deployment in large scenarios. A single manage-
ment plane region is able to handle up to 100 Kubernetes
clusters with up to 100 nodes per cluster. The central
inventory service caches a representation of the remote
sites for better visibility.

Consistent Networking and Granular Security

Networking and security policies are deployed con-
sistently from core to edge, making sure application
deployments are secure and compliant. Compliance
can be enforced even in untrusted physical environ-
ments through service mesh and micro-segmentation
technologies. A distributed Kubernetes architecture

K U B E R N E T E S O P E R AT I O N S 6 1

combines all of these locations—public cloud VPCs, core
data centers, edge data centers, and edge locations—in
a single, interconnected mesh.

Local Data Centers Ensure
Independent Operation
Each local data center can deploy and scale applica-
tions independently of the core data centers, creating
geographically separated “cells” that can run without
a continuous connection to the core data centers. Each
local or regional location runs one or more Kubernetes
master cluster nodes, which manage worker nodes
across that location. This way, each edge location runs
only the absolute necessary hardware—often low-cost,
low-power, and low-maintenance machines—while
regional hubs coordinate application deployment and
resilience across their local region.

Applying This Architecture to
Retail, Manufacturing, and SaaS
A large number of use cases can benefit from the dis-
tributed Kubernetes architecture described in this
chapter. Many enterprises see the same growing need
for edge computing as their revenue streams become
more and more digitally focused. The enterprises see
more need for connecting cloud services to where their

K U B E R N E T E S O P E R AT I O N S 6 2

users are, regardless of whether those users are con-
sumers, other businesses, or IoT-enabled devices.

Retailers are innovating and transforming the shopping
experience to be seamless across online and in-store
visits. This requires connecting cloud and on-premises
locations to work together, offering buyers a consistent
experience. The new architecture unlocks new revenue
streams and increases existing value streams by accel-
erating the rollout of digital store concepts and by in-
creasing in-store automation and the use of innovative
retail software.

The distributed Kubernetes architecture helps retailers
deploy new stores quickly and consistently. It reduces
per-store operational IT costs both for onboarding new
stores and for continuous operation, including lifecycle
management and seamless software upgrades of run-
ning containers.

Manufacturers are replacing Wi-Fi and legacy wired
networks with 5G wireless connectivity for factory
floors and manufacturing plants to connect IoT and
edge devices. That means they need to connect 5G end-
points with worker nodes for data processing, central
management, and factory process engineering. Putting
the compute power at the endpoints minimizes costs
and operational burden.

K U B E R N E T E S O P E R AT I O N S 6 3

Similarly, SaaS and independent software vendors
(ISVs) are starting to use edge computing to improve
their users’ experience, decrease time to market, and
reduce costs and operational burdens. The Platform9
Managed Kubernetes distributed architecture helps
them deploy their software to edge locations, decreas-
ing latency and bandwidth requirements, while con-
sistently deploying the application to many locations
simultaneously.

Especially with many single-tenant application deploy-
ments across edge locations (such as customer sites),
upgrades and other operational and lifecycle tasks are
automated and consistently executed across the board.
This reduces support costs and effort, and allows de-
velopers to spend more time on delivering new features
and software.

Solve Your Kubernetes-at-the-
Edge Challenges
In this Gorilla Guide, you’ve seen how Platform9
Managed Kubernetes is suitable for any kind of appli-
cation at the edge across telco, retail, manufacturing,
enterprise, ISV, and SaaS use cases. Its ability to manage
deployments on any infrastructure based on centralized
policies is a huge time saver. It lowers time-to-fix when

K U B E R N E T E S O P E R AT I O N S 6 4

outages occur, lowers support costs, and improves cus-
tomer satisfaction.

Make sure to look at Platform9 Managed Kubernetes and
its distributed architecture to solve your Kubernetes-
at-the-edge challenges. Try it for free or download the
updated buyer’s guide.

Thanks for reading, and stay safe out there!

https://platform9.com/managed-kubernetes/
https://platform9.com/resource/buyers-guide-to-enterprise-kubernetes-solutions-a-comparison-of-openshift-vs-vwware-tanzu-vs-google-anthos-vs-rancher-vs-platform9-managed-kubernetes/

ABOUT PLATFORM9

Platform9 enables freedom in cloud computing for
enterprises that need the ability to run private, edge,
or hybrid clouds. Our SaaS-managed cloud plat-
form makes it easy to operate and scale clouds based
on open source standards such as Kubernetes and
OpenStack, while supporting any infrastructure run-
ning on-premises or at the edge.

https://platform9.com/

ABOUT ACTUALTECH MEDIA

ActualTech Media is a B2B tech marketing compa-
ny that connects enterprise IT vendors with IT buy-
ers through innovative lead generation programs and
compelling custom content services.

ActualTech Media’s team speaks to the enterprise
IT audience because we’ve been the enterprise IT
audience.

Our leadership team is stacked with former CIOs, IT
managers, architects, subject matter experts and mar-
keting professionals that help our clients spend less
time explaining what their technology does and more
time creating strategies that drive results.

For more information, visit
www.actualtechmedia.com

	The Forgotten Innovation in Kubernetes Deployments
	SaaS Managed Kubernetes: the Effective DIY Alternative
	Outsourcing Makes Sense—on the Surface
	Focus on Business Outcomes

	Tackling Observability in Your Kubernetes Environment
	Types of Observability and Their Value
	Layers of Monitoring
	Making Observability Work for Your Business

	Best Practices for Selecting and Implementing Your Service Mesh
	Reducing Service Mesh Complexity
	The Service Mesh Team
	The Service Mesh Catch-22
	A Service Mesh Choice Is Not Forever
	Conquering Multi-Cloud

	Distributed Edge with Managed Kubernetes
	A New Architecture for Responding to Compute-Intensive Applications
	Bandwidth and Compute Power in a Distributed Architecture
	Central Management Is Still Needed
	Applying This Architecture to Retail, Manufacturing, and SaaS
	Solve Your Kubernetes-at-the-Edge Challenges

