
Production-Grade
Kubernetes

•	 Deploy Kubernetes the Right Way
•	 Leveraging Kubernetes for

Great DevOps
•	 Best Practices for Using

Kubernetes

Inside the Guide

THE GORILLA GUIDE TO...

Production-Grade
Kubernetes
Express Edition

Copyright © 2020 by ActualTech Media

All rights reserved. This book or any portion thereof may not be reproduced or
used in any manner whatsoever without the express written permission of the
publisher except for the use of brief quotations in a book review. Printed in the
United States of America.

ACTUALTECH MEDIA
6650 Rivers Ave Ste 105 #22489
North Charleston, SC 29406-4829
www.actualtechmedia.com

PUBLISHER’S ACKNOWLEDGEMENTS

EDITOR
Keith Ward, ActualTech Media

PROJECT MANAGER
Wendy Hernandez, ActualTech Media

EXECUTIVE EDITOR
James Green, ActualTech Media

LAYOUT AND DESIGN
Olivia Thomson, ActualTech Media

WITH SPECIAL CONTRIBUTIONS FROM
Kamesh Pemmaraju, Bic Le, Roopak Parikh

Introduction: Getting Hold of the Kubernetes Curve�8

Chapter 1: Considerations for Distributed
Kubernetes—from the Data Center to the Edge � 10

Variety of Deployment Models� 10

Network Issues and Multiple Kubernetes Sites�12

Local Data Processing� 14

Security Considerations� 16

Centralized Management of Multiple Environ-
ments� 17

Focus on Your Core Business Objectives� 18

Chapter 2: Creating an Optimal DevOps
Experience with Distributed Kubernetes� 19

Platform Engineering Optimal Experience� 20

The Application Owner’s Optimal Experience� 25

Chapter 3: 10 Considerations for Running
Kubernetes at Scale� 30

Scalability� 30

Availability� 32

Upgradability� 34

TABLE OF CONTENTS

Observability� 36

Performance� 37

Reliability� 39

Supportability� 39

Security� 40

Compliance� 42

Deployability� 43

Chapter 4: Production-Grade Kubernetes: Best
Practices Checklist� 44

Deployment Best Practices� 44

Operations Best Practices� 50

They’re ‘Best’ Practices for a Reason� 54

Work Your Kubernetes Plan� 55

CALLOUTS USED IN THIS BOOK

The Gorilla is the professorial sort that en-

joys helping people learn. In the School

House callout, you’ll gain insight into topics

that may be outside the main subject but are

still important.

This is a special place where you can learn

a bit more about ancillary topics presented

in the book.

When we have a great thought, we express

them through a series of grunts in the

Bright Idea section.

Takes you into the deep, dark depths of a

particular topic.

Discusses items of strategic interest to

business leaders.

ICONS USED IN THIS BOOK

DEFINITION
Defines a word, phrase, or concept.

KNOWLEDGE CHECK
Tests your knowledge of what you’ve read.

PAY AT TENTION
We want to make sure you see this!

GPS
We’ll help you navigate your knowledge

to the right place.

WATCH OUT!
Make sure you read this so you don’t

make a critical error!

TIP
A helpful piece of advice based on what

you’ve read.

INTRODUCTION

Getting Hold of the Kubernetes
Curve
In the early days of containers, it became immediately

obvious that some kind of orchestration tool would be

necessary. Given how easily containers could be cre-

ated and destroyed, and how many of them would be

used, management of this process was key.

Many contenders came and went, but eventually one

technology emerged from the fray and was adopted by

the industry: Kubernetes.

But just because Kubernetes became the standard, it

doesn’t mean that it’s a simple plug-and-play tool.

While powerful (and continuing to grow in scope and

power), it has a steep learning curve.

This Gorilla Guide To…® (Express Edition) Production-

Grade Kubernetes can be an important part of that

curve. In this book, you’ll get a solid introduction

to many of the aspects of deploying and managing

Kubernetes in production.

P R O D U CT I O N-G R A D E K U B E R N E T E S 9

The content in this book is geared toward the practical.

There’s information and advice for getting the most

out of Kubernetes, including best practices, and what

you need to know to scale up, keep it secure, and more.

We skip most of the theoretical aspects of Kubernetes

in favor of how to use it day to day.

We start with some pre-Kubernetes considerations,

those things you’ll have to decide on before deploying

it in your environment. Let’s dive in!

CHAPTER 1

Considerations for Distributed
Kubernetes—from the Data
Center to the Edge
Kubernetes is widely recognized as the platform of

choice for running efficient, distributed, containerized

applications. It’s also common to think of Kubernetes

in terms of a single, large cluster or set of clusters run-

ning in a data center. This is certainly a common de-

ployment approach, but it’s not the only one.

Variety of Deployment Models
Kubernetes can be deployed in many kinds of envi-

ronments. The platform is well-suited to run in micro

data centers that are closer to the edge. A branch of-

fice may only need a small cluster to support the re-

mote operations of an office. This kind of use case can

typically run components that fit into a single rack.

Kubernetes can also run at point-of-presence sites.

For example, retailers may deploy Kubernetes clusters

to physical stores and distribution centers to run ap-

plications, store data locally, and coordinate operations

with centralized processes.

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 1

Kubernetes may also run at edge locations to sup-

port Internet of Things (IoT) systems. A manufacturer

may deploy Kubernetes in multiple locations within a

manufacturing facility to collect IoT data and perform

preliminary processing and analysis. This kind of pro-

cessing close to the environment can help compensate

for unreliable networks and long latencies that can re-

duce the effectiveness of highly centralized processing.

It’s clear there’s a spectrum of cluster deployments.

When you’re considering and planning your Kubernetes

strategy, it’s important to understand where your de-

ployment falls on that spectrum because there are re-

quirements particular to each. A data center cluster,

for example, may have ample resources to scale up the

number of pods in a deployment, while a micro data

center is more constrained.

Platform9, a leading managed
Kubernetes vendor, has produced a webi-

nar1 that provides an overview of Kubernetes
use cases that includes cloud-native apps,
hybrid clouds, and edge computing scenarios.
1 https://platform9.com/resource/scaling-kubernetes-
reliably-at-the-edge/

https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/
https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/
https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/
https://platform9.com/resource/scaling-kubernetes-reliably-at-the-edge/

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 2

In the case of Kubernetes deployed at the edge, you

should consider how continuous integration/contin-

uous deployment (CI/CD) will work with potentially

unreliable networking. The number of sites can quick-

ly become a factor you need to consider. Updating a

single cluster in a data center is challenging enough—

updating hundreds of point-of-presence sites is even

more difficult.

Network Issues and Multiple
Kubernetes Sites
When deploying Kubernetes clusters to multiple data

centers and remote sites, the quality and capacity of

network infrastructure can impact the overall perfor-

mance of the platform.

Data centers typically have high-bandwidth connectiv-

ity. Clusters are composed of servers with high-speed

network connections between them and run in an en-

vironment with multiple racks. The combination of

high-bandwidth networking and the ability to distribute

pods over multiple racks provides the optimal environ-

ment for performant and reliable Kubernetes clusters.

That level of network capacity extends beyond single

data centers, too. Hybrid clouds composed of resources

in a data center and in one or more public clouds can

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 3

have high bandwidth dedicated direct connections be-

tween sites.

Micro data centers and point-of-presence deploy-

ments typically won’t have the same network band-

width available in data centers and within hybrid

clouds. Edge processors and IoT devices are even more

constrained in terms of bandwidth. This is one of the

reasons it’s advantageous to deploy Kubernetes to

multiple locations—with remotely deployed clusters,

the processing is brought close to where the data is

being generated. Local processing reduces the amount

of data that must be sent to the data center and gives

local sites the ability to function autonomously in the

event of a network outage.

This highlights another factor to consider when plan-

ning your Kubernetes strategy: There may be periods

of extended outage. Short outages in well-architected

deployments won’t significantly adversely affect oper-

ations. Longer outages, however, will cause different

clusters to get out of sync. Changes to data will accu-

mulate in the clusters that are isolated by the network

outage and when connectivity is restored, recovery can

begin and data can be synced. Depending on the dura-

tion of the network outage, the recovery may be long

enough to impact performance and service delivery.

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 4

Local Data Processing
The ability to process data locally is a key advantage

of having multiple Kubernetes deployments. This ap-

proach, however, does make it more difficult to deploy

services to multiple clusters. Consider, for example,

the various use cases for distributed Kubernetes.

A retailer may deploy Kubernetes to a centralized serv-

er in a store, as well as to point-of-sale systems. The

centralized server could collect data from point-of-sale

systems, generate real-time reports and dashboards

for local managers, as well as coordinate services run-

ning in a corporate data center or cloud.

5G is changing how businesses deliver services and

collect data. With significantly more bandwidth than

previous generation networks, 5G enables more da-

ta-intensive applications. To achieve the higher band-

widths, 5G networks use higher frequency signals. The

disadvantage of this is that 5G networks need more cell

towers because the signal degrades over long distances.

Those cell towers all have to run networking services,

so managing the deployment of software is a signifi-

cant challenge for carriers. Distributed Kubernetes can

help here, as well. Networking services can be deployed

in containers and updated as needed from a central lo-

cation (see Figure 1).

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 5

IoT devices can also require local data processing.

Machine learning models for analyzing images or con-

trolling autonomous vehicles are best run locally to

avoid unnecessary latency introduced by centralized

processing. Distributed Kubernetes can again miti-

gate the challenges of managing software deployed on

thousands of geographically distributed devices.

These three examples share some common require-

ments. They all need consistent and reliable methods

to update software. In addition, these update methods

Centralized
Control Plane

Higher
latency

Lower
latency

Limited / No
Processing

Processing Speed / Response Time

Edge
Infrastructure

Edge
Devices

Sensors
& Chips

Figure 1: The central management of data centers and edge
locations

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 6

have to be essentially zero-touch and automated in

order to scale.

Stateful services, such as databases, bring another set

of challenges to managing multiple Kubernetes clus-

ters. These services need persistent storage, so you’ll

need to understand how to architect the cluster to de-

liver the needed read and write performance. To en-

able some level of autonomy within the cluster, plan

for graceful degradation of services when the net-

work is down.

For example, data stored on a remote cluster could be

cached locally so that data is available to local process-

es. When the network is available, the databases can

sync and caches can refresh.

Security Considerations
Security operations need to be coordinated across all

environments—especially encryption for data at rest

and key management.

Encryption at rest is required to comply with a wide

variety of regulations, especially when personally

identifying information (PII) or other sensitive data

is stored. There may be multiple levels of encryption,

starting with the storage device.

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 7

Middleware, such as databases, may also provide for

encryption. For example, some relational database

management systems allow data modelers to specify

that particular columns of data should be encrypted.

Applications can also provide for their own encryption

policies and methods. Regardless of the combination

of encryption options you may employ, they need to be

coordinated across all Kubernetes environments.

Key management is another security process that will

need to be managed across environments. Key man-

agement services can provide all the required func-

tionality, but you’ll still need to define policies and

monitor operations. For example, you’ll want to define

policies for key rotation and be able to verify the op-

eration occurs.

Centralized Management of
Multiple Environments
Multiple environments can be a challenge to manage,

especially as the number of sites grows. Some clusters

will be in the data center and can be managed to some

degree with existing tools. Clusters at point-of-pres-

ence sites and on the edge need to be monitored and

managed to maintain the necessary quality of service.

P R O D U CT I O N-G R A D E K U B E R N E T E S 1 8

Fortunately, Kubernetes has auto-healing capabil-

ities that reduce the need for human intervention.

Unhealthy pods are replaced automatically without re-

quiring a DevOps engineer to log into a cluster, iden-

tify the failing pods, and replace them. Auto-healing

also promotes autonomy—if the network is down, the

cluster can continue to function and correct for some

failure within the system.

Focus on Your Core Business
Objectives
Kubernetes is moving beyond the data center to micro

data centers, point-of-presence facilities, and even

the edge. Managing Kubernetes is difficult when it’s

isolated to a data center, but multiple deployments in

different environments compound your management

challenges.

How to respond to those challenges is the subject of

Chapter 2.

CHAPTER 2

Creating an Optimal DevOps
Experience with Distributed
Kubernetes
Kubernetes is widely recognized as a platform that

enables highly efficient use of infrastructure, but or-

ganizations need to understand those benefits are

maximized when the developer experience itself is

optimized.

Developers are increasingly assuming responsibilities

for systems operations. In the past, it was common to

have a separate team of systems administrators re-

sponsible for deploying applications, monitoring re-

source use, and responding to incidents that disrupted

services. Developers who use agile methodologies are

more likely to employ practices that include respon-

sibility for ensuring their software operates efficiently

and reliably.

This is understandable, since one aspect of agile en-

gineering practices is the frequent release of new ver-

sions of services. Rather than hold up the release of an

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 0

update so that multiple features can be included, it’s

more efficient to release small changes continually.

CI/CD pipelines, coupled with version control plat-

forms that promote collaboration, enable this kind of

rapid release of new features. It also means that the

developers who are working in the code and revising

it are in the best position to understand the cause of

performance or reliability problems.

Platform Engineering Optimal
Experience
Developers depend on a stable environment to work.

This entails high uptime, reliability, and performance.

Platform engineering teams should treat the platform

as a product. They provide this platform for developers,

enabling them to create services for their customers.

This includes building teams, processes, and a culture

that continually improves—not just sustains—the

platform. Using agile approaches, developers can de-

liver initial applications on a platform they manage—

but expect to have platform engineers take over re-

sponsibility for the platform.

Kubernetes can help deliver the optimal engineering

experience. It’s designed to automate and orches-

trate reliable computing resources for containerized

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 1

applications. One important aspect of Kubernetes

is that it can be deployed in multiple environments,

including:

•	Centralized data centers, either on-premises or co-

located in a third-party data center

•	Micro data centers used in remote offices

•	Point-of-presence locations such as retail stores

•	Edge computing settings for Internet of Things (IoT)

deployments

Consistent Policies, Practices, and Tools

Consider the challenges of complying with regulations

and policies while maintaining an agile, rapid-fea-

ture-delivery engineering environment. There are

The ability to deploy Kubernetes to a wide
variety of environments is a significant

advantage over deploying customized,
case-specific servers. With a single, common
platform for executing workloads, developers
can spend less time on operational issues
with the help of tooling that supports the
Kubernetes platform.

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 2

multiple dimensions of compliance that must be at-

tended to.

For example, developers, who are also operations

managers, need tools to help ensure authentication

mechanisms are in place. In many cases, authentica-

tion and identity management services are provided by

a centralized service that needs to be accessible from

various Kubernetes deployments.

Highly distributed systems like Kubernetes are con-

stantly generating, storing, and transmitting data.

Many regulations governing privacy and the control of

sensitive information have rules about protecting the

confidentiality of data. To meet these requirements,

it’s a best practice to employ encryption for data in

motion and for data at rest.

Kubernetes environments should be deployed in ways

that provide these encryption services by default.

Application developers shouldn’t have to learn the in-

tricacies of configuring full disk encryption or setting

up TLS connections between nodes. Role based access

controls (RBACs) are essential for securing the plat-

form. Given the large number of services and tenants,

this can be a difficult task and requires tooling to sup-

port and maintain proper RBAC configurations.

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 3

Kubernetes should be deployed with controls in place

to support other governance requirements. For exam-

ple, security scans should be configured to run reliably

on all clusters. Again, this is a necessary capability, but

not one that should require significant developer time.

Tooling should be in place to help with capacity plan-

ning and cost control. Kubernetes is designed to al-

locate resources to workloads that need them. Those

resource demands can, and often do, change over time,

so it’s important to monitor resource utilization and

growth rates in workloads. If a cluster has insufficient

resources, developers may be forced to limit features or

find other workarounds to deal with the lack of capac-

ity. Poor capacity planning can introduce significant

friction in the development process and slow the cre-

ation of new services.

Organizations are increasingly adopting multi-cloud

platforms, so you’ll need to consider integration of

different systems. Legacy on-premises applications

and servers may be used alongside servers running in

a public cloud, for instance. Kubernetes is well suit-

ed to these kinds of deployment models, but there

must be tooling in place to maintain the reliability of

these systems.

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 4

The Negative Impact of Shadow IT

When appropriate tooling isn’t in place and there’s

insufficient centralized support, developers will likely

develop their own solutions to operational challenges.

For example, when platform tools like CI/CD pipelines

aren’t centrally standardized, departments or teams of

engineers may implement their own solutions.

This is problematic for several reasons. For one, it’s

inefficient to have multiple teams duplicating work. It

“Shadow IT” refers to any IT asset—hard-
ware, software, applications—that a user

downloads and uses without the organiza-
tion’s knowledge. It’s becoming more preva-
lent in the cloud era, as there is more access
to more technology.

Some of the biggest problems this causes for
IT include security and compliance issues.

Some estimates of the damage that Shadow
IT causes put it in the trillions of dollars every
year. That makes it crucial for companies to
control and eliminate as much Shadow IT
as possible.

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 5

also means that individual teams are responsible for

maintaining tools and ensuring they’re deployed in

compliance with policies and regulations. They also

become responsible for ensuring that all service-level

agreements (SLAs) are being met.

These kinds of shadow IT practices lead to inconsis-

tent management practices. Instead of a common op-

erations model, organizations are left with a fractured

DevOps situation that makes it more difficult for teams

to collaborate. Teams will develop different procedures

and use different tools, and this often means each

team takes on learning on its own and may not benefit

from what others have experienced.

Clearly, a consistent set of policies, practices, and tools

across an organization is essential to maintaining an

optimal developer experience. It’s also important to

consider what might be required for an application

owner’s optimal experience.

The Application Owner’s Optimal
Experience
Application owners have an obvious stake in ensuring

an optimal developer environment. Key considerations

from their perspective include:

•	Ensuring developers have needed resources

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 6

•	Standardizing on commonly needed resources and

middleware

•	Using tools to streamline package management

within Kubernetes deployments

Key Resources for Developers

Key resources for developers span the development

cycle. There should be support for full stack develop-

ment. UI developers typically work with frameworks

for creating complex Web interfaces, while back-end

developers are more likely to need tools to help opti-

mize high-performance code.

Tooling should also include support for version control

and CI/CD. These tools are becoming more feature-rich

and integrated so that as soon as changes are checked

into a repository, they can trigger a build, with testing

and eventual release to follow.

Service discovery and application catalogs are import-

ant for ensuring developers know the kinds of services

available in the environment. These tools can foster

the sharing of services and reduce redundant code.

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 7

Standardizing Commonly Needed Resources

Application owners should also consider standardizing

commonly needed resources and middleware. For ex-

ample, multiple services may need a relational data-

base back end. There are many high-quality options

to choose from, including both open source and com-

mercial products.

While different relational databases have distinct fea-

tures and capabilities, application owners must ask if

the cost of supporting two or more databases is out-

weighed by the benefit of those specialized features.

In many cases, the economics favor standardizing on a

single kind of database.

It’s also important to make shared components avail-

able in a central catalog that are available for devel-

opers to easily deploy with a few clicks. This provides

the governance that the operations teams need and the

self-service agile experience that developers crave.

Streamlining Package Management

Similarly, organizations should standardize on load

balancers and monitoring tools. While different load

balancers may have different features, the core job of a

load balancer isn’t likely to vary much among services

running in the same environment.

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 8

A single, consolidated monitoring tool should be se-

lected as well, with performance metrics collected in a

single tool. This allows for more comprehensive anal-

ysis of performance monitoring data than if the data

were spread across multiple tools.

Logging and distributed tracing tools are also import-

ant for understanding the state of your systems, iden-

tifying bottlenecks, and understanding the root causes

of performance problems.

Service meshes, like Istio, provide additional services

on top of Kubernetes (see Figure 2). Standardizing

on a single service mesh across all deployments of

Ingress
Gateway

Front End

Control Plane Egress Gateway

Proxy
Sidecar

Back End

Proxy
Sidecar

Database

Proxy
Sidecar

Figure 2: Service mesh traffic overview

P R O D U CT I O N-G R A D E K U B E R N E T E S 2 9

Kubernetes will also improve the overall utility of

Kubernetes from a developer and application owner

perspective.

For all of the benefits of Kubernetes, there are some

challenges to using the platform. Within a single clus-

ter, dozens of packages may be deployed, all of which

must be monitored and maintained along with other

applications. It can be a challenge to keep track of

packages and their state in a single cluster, but the

workload is multiplied when you include Kubernetes

deployments in distributed and edge computing

environments.

Automation is required to support package man-

agement. Fortunately, Helm and Kustomize are two

such package managers that can streamline package

management.

The promise of Kubernetes to more efficiently employ

computing and storage resources is best realized when

you take into account how Kubernetes is used and

maintained by developers. Kubernetes is complex, and

as responsibility for managing clusters moves from

a small number of clusters in a single data center to

hundreds or thousands of distributed clusters, there’s

a risk of not knowing how to run such a distributed

platform optimally. That’s where Chapter 3 comes in.

CHAPTER 3

10 Considerations for Running
Kubernetes
at Scale
Kubernetes is designed to scale to distributed comput-

ing platforms far larger than the systems many en-

terprises use. Moreover, when you deploy thousands

of microservices over a large number of geographically

distributed servers that need to be available virtually

all of the time, operating that platform becomes in-

creasingly complicated. Before you enter the world of

large-scale Kubernetes deployments, here are 10 con-

siderations to keep in mind as you plan your system.

Scalability
Many engineers start working with Kubernetes by

using small clusters. A set of five nodes is sufficient to

work with Kubernetes services, get to know the com-

mands, and practice basic operations, like deploying

new versions of services and creating persistent stor-

age volumes.

While this scale is well-suited for learning about

Kubernetes or supporting a small set of applications, it

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 1

won’t reveal the issues you’re likely to encounter when

you start running hundreds of nodes in a cluster.

One of the issues with large deployments is scaling the

number of pods in a deployment or nodes in a cluster.

In the case of a small five-node cluster, if the workload

increases by 20%, you can manually add another node

to the cluster. You could keep the cluster at the in-

creased size or reduce the number of servers sometime

in the future when the load decreases. The disadvan-

tage of this approach is obvious. Manual intervention

to scale resources isn’t a viable option when working

with large deployments and dynamic workloads.

Kubernetes employs autoscaling to adjust the number

of nodes in a cluster. As the demands for computing

resources change, the autoscaler can increase or de-

crease the number of nodes. When nodes in the cluster

are running at high CPU utilization for extended peri-

ods, the autoscaler will add nodes. Similarly, if nodes

become idle for some period of time, they’re removed

from the cluster. Adjusting the number of nodes in a

cluster is referred to as horizontal scaling.

Another way to scale is to use servers with more re-

sources. For example, instead of deploying nodes with

16 CPUs and 96GB of memory, you could use nodes

with 64 CPUs and 400GB of memory. This is called

vertical scaling (see Figure 3).

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 2

Scaling is an important consideration because it direct-

ly impacts the availability of services. A resource-con-

strained cluster doesn’t have the capacity to process

additional workloads. Over-provisioning is an option,

but it’s a costly one. A better approach is to ensure

you’ve instrumented the cluster so you can collect

metrics about its state and automatically respond to

changing workloads.

Availability
The formal definition of availability is the percentage

of time a system is ready for use. This way of think-

ing about availability is useful when working with

service-level agreements (SLAs). It’s also an appropri-

ate way to think of availability from a user’s perspec-

tive—a system is available if they can use it. A devel-

oper’s perspective is slightly different.

Vertical
Scaling

Horizontal
Scaling

Figure 3: Horizontal vs. Vertical scaling of nodes

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 3

Developers have a more expansive view of availability.

It includes ensuring a production environment is func-

tioning and able to meet the workload on the system

at any time. Developers also depend on development

and test environments being available to do their work.

To ensure developers have the necessary environments

available to them, it’s important to create repeatable

processes for deploying clusters and services.

The repeatable processes for developer environments

may be different from the repeatable processes used

in production environments. Site reliability engineers

(SREs), for example, may have a specific set of design

principles they apply to production environments.

For example, there may be different levels of health

checking, monitoring, and alerting. Service-level

agreements (SLAs) will likely be different, as well.

Also, developers will likely have different needs from

SREs. For example, developers shouldn’t have admin-

istrative access to a production cluster, but they should

have administrative privileges to a cluster in their de-

velopment environment, rather than depend on others

to configure and maintain it.

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 4

Upgradability
Kubernetes is under active development. To ensure you

have access to the latest features, you need to plan for

upgrading clusters. It’s easy to begin working with

Kubernetes and even run production workloads with-

out thinking about how you’ll upgrade the cluster.

Consider a typical scenario of how an enterprise might

start using Kubernetes. A group of developers and a

business sponsor decide to develop a proof of con-

cept (PoC) system on a small cluster. The developers

want to show results as fast as possible, so they choose

the easiest installation method to get Kubernetes up

and running.

Next, they incrementally add other services, such as

a database, which increases complexity to the overall

system. Wanting to show a realistic use case, the de-

velopers then deploy an application. The PoC is well

received and decision-makers agree to make the ser-

vice available in production.

Now, the developers of the PoC are faced with opera-

tionalizing a system that wasn’t designed for the de-

mands of a production environment. They’ll have to

install monitoring and logging tools. Of course, the

business application running in the cluster will need

to be updated, so they’ll have to integrate with a CI/CD

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 5

platform. As you can see, decisions from choosing an

installation method to integrating with a CI/CD plat-

form can’t be made in isolation.

This process continues with even more tools added to

the cluster, which essentially grows organically and in-

crementally according to emerging requirements. This

is unfortunate. To ensure a cluster is upgradeable, or-

ganizations should plan for full lifecycle development.

This is challenging when working with Kubernetes,

however, because most organizations don’t have teams

of experts, and often have far fewer Kubernetes ex-

perts than needed. As a result, production systems are

To ensure upgradability, plan for it from
the start of a Kubernetes project. Often

upgrades can lead to downtime if not planned
carefully. For high SLA and mission-critical
applications, upgrades need to be designed to
avoid downtime, which is exceptionally difficult
without appropriate safeguards. Platform9 has
a beneficial blog post1 that can help pave the
way to successful Kubernetes upgrades.
1 https://platform9.com/blog/kubernetes-upgrade-the-
definitive-guide-to-do-it-yourself/

https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-yourself/
https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-yourself/
https://platform9.com/blog/kubernetes-upgrade-the-definitive-guide-to-do-it-yourself/

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 6

difficult to upgrade and, rather than risk disrupting

services because of an issue updating the platform, en-

terprises continue to run older versions of Kubernetes.

With a properly established CD pipeline that allows for

rollbacks, Blue-Green and Canary deployments, enter-

prises can be more confident in upgrading to newer

versions more frequently. This helps avoid running

significantly out-of-date versions of the platform.

Observability
The more complex a system becomes, the more im-

portant it is to be able to determine the state of that

system at any time. Observability is the term for this.

Usually, when developers talk about observability,

they’re referring to collecting metrics, logs, and dis-

tributed traces from servers and processes. These types

of information are essential for diagnosing and cor-

recting problems.

For example, a pod in a Kubernetes cluster may be

constantly restarting. How would someone go about

troubleshooting this? They might look into problems

with the cluster, like the loss of a quorum or a problem

on a single node, such as no free disk space—and this

problem is compounded when dealing with multiple

clusters running in different locations and clouds.

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 7

There are many possible contributing factors to prob-

lems with cluster operations. Curated dashboards

showing key metrics can help developers and SREs

focus on the most important pieces of information.

Given the overwhelming number of metrics and logs

that could be observed, it helps to have experts identify

which to include in your dashboard. In fact, this prin-

ciple applies to all of the considerations outlined here.

Performance
When planning for Kubernetes at scale, consider how

you’ll maintain appropriate levels of performance.

Specifically, is your system able to meet compute,

storage, and network needs at any point in time?

Think about performance at both an application and

a cluster level.

At the application level, deployments should be perfor-

mant. Deployments consist of multiple pods, so pods

need to be performant for the deployment to be perfor-

mant. Of course, with a sufficient number of pods, the

deployment can continue to meet the needs of work-

loads even if some small number are not functioning

as expected.

At the cluster level, you should consider how to main-

tain the overall performance of a cluster. This is largely

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 8

a factor of how performant the nodes are, but other

cluster-level properties, such as how fast a cluster

can autoscale, can impact the overall performance of

the system.

Working with Images
It’s best to use container-optimized
images so that Kubernetes can pull
them faster and run them more
efficiently.

What’s meant by being optimized is
that they:

•	 Only contain one application or do one thing

•	 Have small images, since big images aren’t so portable
over the network

•	 Have endpoints for health and readiness checks so that
Kubernetes can take action in case of downtime

•	 Use a container-friendly OS (like Alpine or CoreOS)
that make them more resistant to misconfigurations

•	 Use multistage builds so that only the compiled ap-
plication (and not the dev sources that come with it)
is deployed

Lots of tools and services let you scan and optimize imag-
es on the fly. It’s important to keep them up to date and
security-assessed at all times.

P R O D U CT I O N-G R A D E K U B E R N E T E S 3 9

The geographic location of the cluster nodes that

Kubernetes manages is closely related to the latency

that clients experience. For example, nodes that host

pods located in Europe will have faster DNS resolve

times and lower latencies for customers in that region.

Reliability
Reliability is a property of a system that’s closely re-

lated to availability. The formal definition of reliability

is a measure that takes into account the mean time

between failures and the mean time to recovery.

Reliability in Kubernetes is determined by the ability

of the system to provide resources when needed and

the ability of systems software to function as expected.

The ability to scale resources up is especially important

to reliability. Being able to observe the state of a cluster

and respond to problems is also a significant factor for

maintaining highly reliable clusters and services.

Supportability
Kubernetes clusters, like any complex system, re-

quire sufficient support to be maintained properly.

Supportability is a measure of how much effort is re-

quired to keep clusters and services functioning.

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 0

Systems can be available and reliable, but only with

human intervention. Kubernetes is designed to min-

imize the need for that intervention. For example,

Kubernetes monitors the status of pods and replaces

them automatically when they fail health checks.

In addition to the core Kubernetes components, sup-

portability encompasses other components that may

be deployed in a cluster. For example, a cluster that

supports the training and use of machine learning

models may support Kubeflow, a deployment manager

for machine learning. Supportability also needs to ex-

tend to services that users will need to use Kubernetes

effectively, including Prometheus, Fluentd, Istio,

and Jaeger.

When scaling up a Kubernetes cluster, consider how

you’ll continue to support existing services, as well as

additional services that may be needed in the future.

Security
Security is always a consideration when deploying

services. As an administrator of Kubernetes clusters,

you’ll need to attend to multiple security mechanisms,

including access controls, encryption, and manag-

ing secrets.

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 1

Access controls depend on identity management. There

must be a way to represent users and service accounts

within the cluster. To streamline identity manage-

ment, users should be assigned to roles or groups that

have permissions assigned to them.

You should also consider how you’ll enforce the prin-

ciple of least privilege—granting only the permissions

a user needs to perform their job and no more. In ad-

dition to these authorization considerations, you’ll also

need to deploy authentication methods that support

the way users employ the cluster.

Platform9 has a useful blog entry that
discusses Kubernetes-related security

issues in-depth: Kubernetes Security: What
(and What Not) to Expect.1 It includes:

•	 An architectural overview of components

•	 Built-in features

•	 What is not secured by default

•	 Securing at scale
1 https://platform9.com/blog/kubernetes-security-what-
and-what-not-to-expect/

https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/
https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/
https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/
https://platform9.com/blog/kubernetes-security-what-and-what-not-to-expect/

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 2

Also, plan for how and when you’ll use encryption.

Sensitive and confidential information should be en-

crypted at rest, as well as in transit.

You should plan to provide a mechanism for storing

secrets, such as database passwords and API keys.

Developers may be used to storing secrets in config-

uration files and setting environment variables with

those secret values, but a centralized repository for

managing secrets is more secure.

Compliance
Closely related to security is compliance. As the size

of Kubernetes clusters grows, it becomes imperative to

define policies that allow you to meet regulatory re-

quirements with minimal manual intervention. Pay

particular attention to audit policies and how they’re

used to demonstrate compliance.

Also, consider where Kubernetes is deployed. Clusters

aren’t constrained by political boundaries. Know

which regulations you must comply with if a cluster

is deployed in multiple countries or in states with ap-

plicable regulations, such as GDPR in the European

Union and the California Consumer Privacy Act in the

United States.

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 3

Deployability
Kubernetes runs in a variety of environments. Some

clusters are deployed on-premises in a data center

while others are in a public cloud. Hybrid clouds are

common, as well. At the other end of the spectrum,

Kubernetes may be deployed to a point-of-presence

system, such as those in retail stores. IoT systems can

benefit from computing resources at the edge, which

can be delivered using Kubernetes.

Consider how you’d deploy updates to Kubernetes in

these various environments. Is the process automat-

able? How much human intervention is required to de-

ploy Kubernetes? If you plan to scale Kubernetes, you

should strive for zero-touch automated procedures.

With these considerations in mind, it’s time to move

onto the more practical aspects of running Kubernetes

in production. The next chapter is full of best practices

that will help you get the most out of your container-

ized environment.

CHAPTER 4

Production-Grade Kubernetes:
Best Practices Checklist

Kubernetes is rapidly becoming a key element of en-

terprise IT infrastructure. As with other enterprise

platforms, there’s a broad array of requirements to

keep Kubernetes clusters functioning and running

efficiently. Here are several best practices to employ

when running Kubernetes in production.

Deployment Best Practices
Kubernetes environments are highly dynamic. Services

are deployed and updated frequently. Nodes are added

and removed from clusters. Clusters are spun up and

down according to workload.

Kubernetes handles much of the management of this

lifecycle, but when it comes to deploying services,

much of the responsibility rests with IT professionals.

To streamline the ability to deploy and maintain ser-

vices, keep in mind deployment best practices—these

ones in particular:

•	Ensure open and flexible environments

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 5

•	Standardize the container build process

•	Ensure self-service

•	Manage applications and storage

Ensuring Open and Flexible Environments

Kubernetes runs on a variety of computing infrastruc-

ture, including commodity servers. Existing hardware

can be redeployed to run Kubernetes along with newly

procured servers. You have your choice of running

Kubernetes on bare metal, virtual machines (VMs), or

in public clouds.

If you already have an established VM environment,

running Kubernetes in that environment can be a log-

ical choice. If you would rather not maintain physi-

cal infrastructure, then running Kubernetes in a

public cloud is a good option and one with low barri-

ers to entry.

Kubernetes has also prompted the development of ad-

ditional open source software that runs on the plat-

form. Tools like Helm for deployment and Istio for ser-

vice management are open source tools that extend the

capabilities of the Kubernetes environment.

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 6

Standardize the Container Build Process

Containers are a key building block of a microservice

architecture, and how they’re managed directly im-

pacts the efficiency, reliability, and availability of ser-

vices running in Kubernetes clusters.

The container build process should be automated using

a CI/CD system. Open source tools such as Jenkins are

widely used CI/CD tools. Major public cloud providers

also offer CI/CD services. These tools reduce the work-

load on developers when deploying a service. They also

allow for automated testing prior to deployment, and

can support rollback operations when needed.

Platform9 has an informative blog post1
about running Kubernetes on-premises.

It includes the challenges, opportunities
and benefits, and considerations for running
Kubernetes on bare metal. It also details infra-
structure requirements and best practices for
on-premises DIY Kubernetes implementations.
1 https://platform9.com/blog/kubernetes-on-premises-why-
and-how/

https://platform9.com/blog/kubernetes-on-premises-why-and-how/
https://platform9.com/blog/kubernetes-on-premises-why-and-how/
https://platform9.com/blog/kubernetes-on-premises-why-and-how/

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 7

Container images should be stored in an image re-

pository. This centralized store should also support

image scanning to check for security vulnerabilities.

By providing an image repository, you can promote

the consistent use of approved images. This reduces

the chance of deploying a misconfigured container.

Developers have a range of container registry options,

including Docker Hub,1 JFrog Container Registry,2 and

JFrog Artifactory.3

For example, a Docker image may require that several

tools be installed, and those tools may require different

versions of the same library. Someone unaware of the

potential conflict might fail to properly install the li-

brary’s multiple versions. This could lead to deploying

an image that will fail in production and require a team

of DevOps engineers to diagnose in production.

A standardized image build process helps remediate

failed deployments. For example, the CI/CD pipeline

can be configured to perform a canary deployment, in

which a small amount of traffic is routed to a newly

deployed service. If there’s a problem, only a small

number of users are adversely affected.

1  https://hub.docker.com/

2 https://jfrog.com/container-registry/

3 https://jfrog.com/artifactory/

https://hub.docker.com/
https://jfrog.com/container-registry/
https://jfrog.com/artifactory/
https://hub.docker.com/
https://jfrog.com/container-registry/
https://jfrog.com/artifactory/

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 8

Alternatively, the CI/CD process could employ a rolling

deployment in which pods are replaced one by one, al-

lowing for an incremental transition to a new version

of a service. Of course both canary and rolling deploy-

ments could be done manually, but that would be more

time-consuming and error-prone (see Figure 4).

As part of the image build process, be sure to include

a monitoring mechanism. Some monitoring tools use

Figure 4: Deployment models like rolling and canary deploy-
ments help identify any issues with a new deployment before
it causes any significant impact to production.

Before

V1 V1 V1

During

V1 V1 V1 V2 V2 V2

After

V1 V1 V1 V2 V2 V2

Before

V1 V1 V1 V1 V1 V2

During After

V2 V2 V2

P R O D U CT I O N-G R A D E K U B E R N E T E S 4 9

agents to collect server and application performance

data and send it to a centralized data store for report-

ing and alerting. It’s important to have visibility into

the performance of services so you can correct issues

that can’t be addressed directly by Kubernetes.

Ensure Self-Service

Developers should not have to coordinate with IT ad-

ministrators to deploy and monitor services running in

Kubernetes clusters. To ensure developers can manage

deployments, it’s important to provide tools for de-

ploying and scanning applications.

For example, Helm is a package manager for Kubernetes

and supports defining, deploying, and upgrading ap-

plications, which can streamline the management of

applications. Security scanning tools should be in place

as well, to help developers identify vulnerabilities in

applications before they’re deployed.

Applications and Storage

With developers and admins alike working across mul-

tiple environments, it’s also important to have policies

in place to enable efficient use of resources. Consider

RBAC policies and limits to ensure resources are used

P R O D U CT I O N-G R A D E K U B E R N E T E S 5 0

fairly, and that no single deployment consumes an ex-

cessive amount of resources.

Operations Best Practices
In addition to employing deployment best practices,

there are several operations best practices you should

strive to implement, including:

•	Single pane of glass visibility

•	Scaling best practices

•	Governance and security

•	Upgrading

Together, these best practices can help reduce the

operational overhead associated with maintaining

Kubernetes clusters.

Cluster Observability

The idea behind single pane of glass visibility is that

all information needed to understand and diagnose the

current state of the cluster, deployments, and other

components should be available from a single tool.

For example, from a single application, administra-

tors should be able to configure monitoring, analyze

monitoring data, and specify alerts triggered by that

P R O D U CT I O N-G R A D E K U B E R N E T E S 5 1

monitoring data. Plan to use a standardized set of

monitoring tools for collecting, storing, analyzing, and

visualizing performance monitoring data.

This monitoring functionality can also be used to

monitor compliance with SLAs. Another advantage of

standardizing is that you can define templates to pro-

mote reusability.

Scaling Best Practices

When scaling with Kubernetes, you have the option of

scaling the size of a cluster or increasing the number of

clusters. When workloads vary widely, the Horizontal

Pod Autoscaler can be used to adjust the number of

nodes in a deployment. Kubernetes also has a Vertical

Pod Autoscaler, but that’s currently in beta release and

shouldn’t be used in production.

One scaling question you’ll face is whether to run

one cluster or multiple clusters. Kubernetes can scale

to thousands of nodes and hundreds of thousands of

pods, so a single cluster can meet many use cases.

There are, however, some advantages of using multi-

ple clusters. One is reliability. In the event of a cluster

failure, all workloads are affected in a single cluster

environment. Also, with multiple clusters different de-

velopment teams can manage their own clusters—and

P R O D U CT I O N-G R A D E K U B E R N E T E S 5 2

Platform9: Your Trusted
Kubernetes Partner
Kubernetes is a powerful tool, but

that power comes at the price of

complexity. And the more you scale

up and out, the more complex it gets.

That’s why it can make sense to call in the cavalry.

Bringing in a partner who specializes in Kubernetes can

get you up and running much more quickly, and help

you manage the new infrastructure more efficiently.

Platform9,1 for example, helps automate Kubernetes,

freeing you from the significant burden of a DIY

approach. This is what the company does, and it’s an

expert at it.

Its managed Kubernetes platform, known as PMK,

provides the ability to easily run Kubernetes at scale.

It allows you to leverage your existing environments,

with no operational burden on your IT staff. You get

the power of Kubernetes without the hassle of manag-

ing the complexity.

When you’re ready to do more with your Kubernetes,

be sure to check out Platform9’s free sandbox and

freedom plan,2 which users can try out at no charge.

1 https://platform9.com/

2 https://platform9.com/sandbox/kubernetes/

https://platform9.com/
https://platform9.com/sandbox/kubernetes/
https://platform9.com/sandbox/kubernetes/
https://platform9.com/
https://platform9.com/sandbox/kubernetes/

P R O D U CT I O N-G R A D E K U B E R N E T E S 5 3

that can increase the velocity of each team, if it doesn’t

need to coordinate cluster changes with other teams.

Governance and Security

As with any enterprise platform, you’ll need to con-

sider governance and security. To start with, plan to

implement granular RBAC. These can be used to im-

plement the principle of “least privilege,” which states

that users should have only permissions they need to

perform tasks assigned to them and no more.

Use audit trails to track security-related changes in the

system. For example, operations, like adding a user

and changing permissions, should be logged. Also, use

encryption to secure communications both within and

outside of the cluster.

It’s a best practice to scan applications for vulnerabili-

ties. In a similar way, you should review vulnerabilities

in Kubernetes software and patch as necessary. This is

a situation in which it may be beneficial to have multi-

ple clusters, because a patch can be deployed to a single

cluster and evaluated before rolling it out to others.

Upgrading

Kubernetes is under active development, which pro-

vides for new functionality and improved reliability.

P R O D U CT I O N-G R A D E K U B E R N E T E S 5 4

As part of your Kubernetes management strategy, plan

to upgrade while supporting production workloads.

For example, the master will need to be upgraded be-

fore nodes. To avoid disruption, you can run multiple

master nodes and upgrade one master at a time or use

rolling upgrades to ensure zero downtime during the

upgrade process.

Similarly, nodes can be upgraded incrementally. Also

plan to patch and upgrade operating systems running

on nodes. Be sure to maintain up-to-date backups.

Backups are an important insurance measure for re-

covering from a failed upgrade.

They’re ‘Best’ Practices for a
Reason
Kubernetes is a complex platform that provides for

highly scalable, efficient use of computing and stor-

age resources. But it can also be highly problematic

for companies that just try to “wing it” and figure out

what to do as they go along.

Don’t let that be you. Following the best practices out-

lined here will help to ensure that you realize the opti-

mal benefit of your Kubernetes investment.

P R O D U CT I O N-G R A D E K U B E R N E T E S 5 5

Work Your Kubernetes Plan
As you’ve seen through this Gorilla Guide, Kubernetes

is a powerful way to orchestrate your container envi-

ronment. That’s why it’s become the de facto method

for the IT industry. But that power comes at the price

of complexity—and as your operations scale up, it be-

comes more difficult.

It’s a challenge, to be sure, to properly deploy and

run Kubernetes. But the sizable advantages that come

along with it make the effort well worth it. The key is

to understand what you want to do with containers be-
fore deploying your first pod. Spinning them up with-

out a well-thought-out plan can be inviting disaster.

Don’t let that be you.

ABOUT PLATFORM9

Platform91 enables freedom in cloud computing for

enterprises that need the ability to run private, edge,

or hybrid clouds. Our SaaS-managed cloud plat-

form makes it easy to operate and scale clouds based

on open source standards such as Kubernetes and

OpenStack, while supporting any infrastructure run-

ning on-premises or at the edge.

1 https://platform9.com/

https://platform9.com/

ABOUT ACTUALTECH MEDIA

ActualTech Media is a B2B tech marketing compa-

ny that connects enterprise IT vendors with IT buy-

ers through innovative lead generation programs and

compelling custom content services.

ActualTech Media’s team speaks to the enterprise

IT audience because we’ve been the enterprise IT

audience.

Our leadership team is stacked with former CIOs, IT

managers, architects, subject matter experts and mar-

keting professionals that help our clients spend less

time explaining what their technology does and more

time creating strategies that drive results.

For more information, visit

www.actualtechmedia.com

	Getting Hold of the Kubernetes Curve
	Considerations for Distributed Kubernetes—from the Data Center to the Edge
	Variety of Deployment Models
	Network Issues and Multiple Kubernetes Sites
	Local Data Processing
	Security Considerations
	Centralized Management of Multiple Environments
	Focus on Your Core Business Objectives

	Creating an Optimal DevOps Experience with Distributed Kubernetes
	Platform Engineering Optimal Experience
	The Application Owner’s Optimal Experience

	10 Considerations for Running Kubernetes at Scale
	Scalability
	Availability
	Upgradability
	Observability
	Performance
	Reliability
	Supportability
	Security
	Compliance
	Deployability

	Production-Grade Kubernetes: Best Practices Checklist
	Deployment Best Practices
	Operations Best Practices
	They’re ‘Best’ Practices for a Reason
	Work Your Kubernetes Plan

