
BROUGHT TO YOU IN PARTNERSHIP WITH

PAGE 2TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Welcome Letter

The adoption of Kubernetes continues its march forward. Is
it a perfect technology stack? No, but what technology stack
is? Does it have a somewhat steep learning curve? Yes, it
does. With these and other questions, you might ask:

"Why does the adoption of Kubernetes continue to grow,
and do I want to jump into the pool? Isn't it just (and yet)
another deployment abstraction layer like how virtual
machines eventually became ubiquitous?"

To some extent, those are legitimate questions.

As someone who has literally spent decades in this industry
delivering products and applications, the drive to deliver
applications more efficiently and quickly has, at the very
least, remained a constant, and one could argue that the
drive to deliver continues to increase in intensity. I see
Kubernetes as an opportunity to take a significant step
forward in improving application delivery.

Many of us love researching and adopting new technologies.
Kubernetes and containerization, in general, are "cool stuff."
However, many of us also make a living in this field, and
businesses don't really care about cool stuff. Stakeholders
want to be shown how they can leverage technology to
their advantage.

When you look at the topics presented in this Trend Report,
they focus on technical opportunities, managing costs, and
streamlining processes — important topics to business
stakeholders.

While Kubernetes is an evolution in technology, when
applied with the right mindset, it encourages a cultural
shift. To me, this is what makes Kubernetes exciting. I
see it analogous to the Agile movement. Key to Agile
methodologies is having representation from all aspects
of an organization. Kubernetes, done well, is a collaborative
effort across multiple organizational disciplines.

Kubernetes has allowed the replication of production-
like environments to be available as early in the process as
an engineer's workstation. This capability facilitates more
communication between those creating an application and
those who deploy and monitor it; all parties involved get
to understand each other's requirements and challenges,
and working as a team can resolve them. This requires
cooperation, teamwork, empathy, and a host of other "soft
skills." It can change the culture of an organization, and I
would argue for the better.

So while you explore in the 2023 Kubernetes in the Enterprise
Trend Report how Kubernetes can move your business
forward, consider how Kubernetes can also impact the
culture within your organization — for the better.

Seize the Opportunity,

Ray Elenteny

By Ray Elenteny, Solution Architect at SOLTECH, Inc.

Ray Elenteny, Solution Architect at SOLTECH, Inc., DZone Core Member
@rbetae on DZone | @ray-elenteny on LinkedIn

With over 35 years of experience in the IT industry, Ray thoroughly enjoys sharing his experience by
helping organizations deliver high-quality applications that drive business value. Ray has a passion for
software engineering. Over the past ten years or so, Ray has taken a keen interest in the cultural and

technical dynamics of efficiently delivering applications.

https://dzone.com/users/1070157/rbetae.html
https://www.linkedin.com/in/ray-elenteny/

PAGE 3TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

ORIGINAL RESEARCH

Kubernetes: it is everywhere. To fully capture or articulate the prevalence and far-reaching impacts of this monumental
platform is no small task — from its initial aims to manage and orchestrate containers to the more nuanced techniques to scale
deployments, leverage data and AI/ML capabilities, and manage observability and performance — it's no wonder we, DZone,
research and cover the Kubernetes ecosystem at great lengths each year.

In September 2023, DZone surveyed software developers, architects, and other IT professionals in order to understand the state
of Kubernetes across enterprises.

Major research targets were:

1. The current state of containers and container orchestration

2. Kubernetes advantages, disadvantages, and pain points

3. Kubernetes practices and techniques

Methods: We created a survey and distributed it to a global audience of software professionals. Question formats included
multiple choice, free response, and ranking. Survey links were distributed via email to an opt-in subscriber list, popups on
DZone.com, the DZone Core Slack workspace, and various DZone social media channels. The survey was opened on August 31st
and ended on September 19th; it recorded 103 complete and partial responses.

Demographics: Due to the limited response rate for our 2023 Kubernetes survey, we've noted certain key audience details
below in order to establish a more solid impression of the sample from which results have been derived:

• Respondents described their primary role in their organization as "Technical Architect" (22%), "Developer/Engineer" (21%),
"Developer Team Lead" (13%), "Consultant/Solutions Architect" (11%), and "DevOps Lead" (11%).

• 80% of respondents said they are currently developing "Web applications/Services (SaaS)," 55% said "Enterprise business
applications," 22% said "Native mobile apps," and 21% said "High-risk software (bugs and failures can mean significant
financial loss or loss of life)."

• "Java" (74%) was the most popular language ecosystem used at respondents' companies, followed by "JavaScript (client-
side)" (56%), "Python" (52%), and "Node.js (server-side JavaScript)" (43%).

• Regarding responses on the primary language respondents use at work, the most popular by far was "Java" (43%),
followed distantly by "Python" (15%) and "Go" (11%).

• On average, respondents said they have 17.28 years' experience as an IT professional, with a median of 18 years' experience.

• 33% of respondents work at organizations with < 100 employees, 18% work at organizations with 100-999 employees, and
47% work at organizations with 1,000+ employees.

In this report, we review some of our key research findings. Many secondary findings of interest are not included here.

Research Target One: The Current State of Containers and Container Orchestration
Motivations:

1. Kubernetes and containers are inextricably linked, and one of the main reasons behind container orchestration demand
— and, by extension, the purpose of this very report — is the use of containers seemingly everywhere in contemporary
software development. We wanted to know how often containers are being used today compared to our surveys from
previous years, and whether organization/application size correlated with container usage.

2. Container usage can be so prevalent in modern software because of the availability and accessibility of robust container
management tools. From free and open-source tools to paid, enterprise-level solutions, there are more than a few options
for spinning up, managing, and orchestrating containers. We aimed to see which container tools were being used most often.

Key Research Findings
An Analysis of Results from DZone's 2023 Kubernetes Survey

By G. Ryan Spain, Freelance Software Engineer, former Engineer & Editor at DZone

PAGE 4TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

3. Finally, to get to the crux of this Trend Report, we wanted to find out how often Kubernetes is being used — both
organizationally (how many companies are running Kubernetes clusters) and individually (how many software
professionals have worked with Kubernetes themselves).

CONTAINER POPULARITY
In 2021's Kubernetes in the Enterprise "Key Research Findings," we speculated that containerization may have reached a point
of saturation based on the results of our survey. Last year, our data indicated that container usage may have even begun
declining, especially among smaller organizations.

To continue this analysis of the prevalence of containers, comparing with annual data from 2017 to the present, we asked:

Do you use application containers in either development or production environments?

Results (n=91):

Figure 1

No

I don’t know

Yes

87.9%

3.3%

8.8%

CONTAINER USE IN DEV AND PROD ENVIRONMENTS

Figure 2

2017 2018 2019 2020 20222021
0

20

40

60

80

100

70%

42%
45%

90% 88%

83%

2023

88%
% using
containers

Logarithmic (% using containers)
f(x) = 0.2779 ln(x) + 0.3844
R2 = 0.8393

Linear (% using containers)
f(x) = 0.0829 x + 0.3914
R2 = 0.7424

CONTAINER USE: 2017-2023

https://dzone.com/trendreports/kubernetes-and-the-enterprise-1

PAGE 5TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Observations:

1. Container usage has returned to the levels we saw in 2020 and
2021, with 88% of respondents saying that they use application
containers in either development or production environments.
This reaffirms some of the suspicions we had about the validity
of a subset of responses to last year's survey and suggests that
those results may have been lower than they should have been.

The data also reinforces the hypothesis we stated in 2021 —
that containerization has reached a saturation point. Further
supporting the saturation hypothesis is the trendline for
Figure 2, where a logarithmic model (R²=0.839) fits much
better than a linear one (R²=0.742). We anticipate, based on
the data, that next year's survey will show around a 90% container usage rate.

2. We found again this year that respondents at the smallest organizations (1-99) were the least likely to use containers. In
fact, nearly all respondents at organizations with > 100 employees said that they use application containers (99%), while
only 71% of respondents at organizations with < 100 employees said they use containers.

If we were to assume that larger organizations tend to have larger/more complex applications, this discrepancy may
indicate that relatively small or simple applications just don't have the same need for containerization — even in
development — as bigger applications. Alternatively, it could be that smaller organizations are less likely to be able to
expend the resources necessary to properly manage and orchestrate containers.

CONTAINER MANAGEMENT TOOLS
Considering the apparent saturation of container usage, it seems that the tools being used for container management — and
the demand for those tools — are more important than ever. To get a better sense of this demand and the tools being used to
fill it, we asked:

What tools/platforms are you using to manage containers in development and production environments?

Results (n=75):

Table 2

TOOLS USED TO MANAGE CONTAINERS IN DEV AND PROD ENVIRONMENTS*

Tool

Development Production

% n= % n=

Docker 81% 61 48% 36

Kubernetes 71% 53 64% 48

Docker Compose 43% 32 16% 12

Terraform 32% 24 29% 22

AWS EKS 27% 20 28% 21

Azure AKS 24% 18 19% 14

OpenShift 19% 14 15% 11

GKE 15% 11 15% 11

AWS ECS 13% 10 17% 13

Ansible 11% 8 8% 6

*Note: This table only displays options selected by > 5% of respondents in either the Development or Production category.

Observations:

1. Docker was the most commonly used container management tool in development environments, with 81% of
respondents saying they use Docker on the dev side of things; Kubernetes was not far behind at 71%. Other commonly
used container tools for development were Docker Compose (43%), Terraform (32%), AWS EKS (27%), and Azure AKS (24%).

Table 1

CONTAINER USE BY ORGANIZATION SIZE

Response

Org Size

1-99 100-999 1,000+

Yes 71% 100% 98%

No 21% 0% 3%

I don't know 7% 0% 0%

PAGE 6TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

2. In production environments, Kubernetes and Docker switched places, with 64% of respondents saying they use
Kubernetes and 48% saying they use Docker in prod. Terraform (29%), AWS EKS (28%), and Azure AKS (19%) were again
popular options here — though to a lesser extent than Kubernetes and Docker — followed by AWS ECS (17%).

3. 81% of respondents said they are using Docker in either development, production, or both types of environments
(incidentally, this means that all respondents who said they were using Docker were using it in a development
environment). 76% of respondents said they are using Kubernetes in either one or both of these types of environments.

4. Among the three biggest cloud providers — Amazon, Microsoft (Azure), and Google — AWS EKS (28%) was significantly
more popular than Azure AKS (19%) in production environments, but in development, the 3% lead that AWS EKS (27%)
had over Azure AKS (24%) is statistically insignificant (based on a 6% margin of error). GKE came behind both AWS EKS
and Azure AKS in both production (15%) and development (15%) environments, though again, the Azure AKS lead in
production environments here is statistically insignificant.

KUBERNETES USAGE
As we saw from the data presented in the "Container Management Tools" section, Kubernetes is being used by a lot of software
professionals. We wanted to dive a little deeper into the frequency of its use, so we asked respondents:

Does your organization run any Kubernetes clusters?

and

Have you personally worked with Kubernetes?

Results (n=88 and n=85, respectively):

Figure 3

No

Yes

I don’t know79.5%

15.9%

4.5%

ORGANIZATIONS RUNNING KUBERNETES CLUSTERS

Figure 4

No

Yes

76.5%

23.5%

PERSONAL EXPERIENCE WITH KUBERNETES

PAGE 7TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Observations:

1. 80% of respondents said that their organization is running Kubernetes clusters, 16% said that their organization does
not, and 5% said that they did not know. Furthermore, 77% of respondents said that they have personally worked
with Kubernetes, and 24% said they have not. The results of these two questions were, unsurprisingly, correlated: 90%
of respondents at organizations using Kubernetes said that they have used it themselves, compared to only 29% of
respondents at organizations not using Kubernetes.

2. Much like we saw with container use in general, smaller organizations are much less likely to run Kubernetes. 71%
of respondents at smaller organizations (< 100 employees) said their organization has Kubernetes clusters running,
compared to 91% of respondents at organizations with > 100 employees. Again, we presume this discrepancy may be
related to small organizations/applications lacking either the need or the resources for running Kubernetes — or some
mix of the two — compared to large, or even mid-sized, organizations.

Research Target Two: Kubernetes Use Cases, Advantages, and Disadvantages
Motivations:

1. As we observed in the previous section, Kubernetes is likely being used to some extent in most software-focused or
software-adjacent organizations, and by most software professionals. As such, we wanted to know the types of use cases
organizations are using Kubernetes for most commonly.

2. Choosing software tools always involves some amount of weighing the advantages and disadvantages, and even the best
tools have their pros and cons. We asked respondents what Kubernetes has improved — and what it has worsened — at
their organizations.

3. No technology is without its pain points, especially a technology as relatively new as Kubernetes. We aimed to find out
which Kubernetes frustrations were causing the most agitation for software professionals.

KUBERNETES USE CASES
Before diving into the Kubernetes pros and cons that respondents observed, we wanted to look at the use cases for which
Kubernetes was being employed, so we asked respondents:

What use cases do you deploy Kubernetes into?*

Results (n=69):

Figure 5

0 20 40 60

Hybrid/multi-cloud

Air-gapped

Fast data pipelines

AI/ML

Non-ML AI

Edge/IoT

New cloud-native apps

Lift and shift existing apps

Modernizing existing apps

Other - write in

10 30 50

KUBERNETES USE CASES

PAGE 8TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Observations:

1. The most common Kubernetes use cases were
"New cloud-native apps" (58%), "Hybrid/multi-cloud"
(52%), and "Modernizing existing apps" (49%). The
least common use cases were "Air-gapped" (12%),
"Non-ML AI" (12%), and "Edge/IoT" (7%).

2. Respondents at organizations with < 100 employees
were considerably less likely than respondents at
larger organizations to use Kubernetes for "Hybrid/
multi-cloud" (24% vs. 63%), "Lift and shift [for]
existing applications" (18% vs. 35%), and "Non-ML
AI" (0% vs. 17%). On the other hand, there was no
significant difference between small and large
organization response rates for "Modernizing
existing applications" (47% vs. 50%) and "Edge/IoT"
(6% vs. 8%) use cases.

3. Respondents at smaller organizations, on average,
selected fewer Kubernetes use cases (1.76) than
those at larger organizations (2.94).

KUBERNETES ADVANTAGES AND DISADVANTAGES
Kubernetes, like any popular software tool, has only gained its tremendous popularity because of the improvements it is able to
provide to software and software development. At the same time, using Kubernetes also has its share of potential drawbacks.
While these advantages and disadvantages will be perceived differently from developer to developer and organization to
organization, we wanted to get a sense of whether there is any consensus on what Kubernetes made better — or worse — at
respondents' organizations. We asked:

What has Kubernetes improved at your organization?

and

What has Kubernetes worsened at your organization?*

Results (n=65):

Figure 6

WHAT KUBERNETES HAS IMPROVED vs. WORSENED

Overall
system
design

CostReliabilityApp
modularity

SecurityBuilding
micro-

services

Archit-
ectural

refactoring

Auto-
scaling

Deploys
in general

CI/CD
0

20

40

60

80

100

Improved

Neither

Worsened

*Note: These questions were only asked to respondents who answered "Yes" to the question, "Does your organization run any Kubernetes
clusters?" Additionally, these results ignore any responses where both "Improved" and "Worsened" were selected; < 5% of responses were
ignored this way per response option.

Table 3

KUBERNETES USE CASES BY ORGANIZATION SIZE

Use Cases

Org Size

Gap< 100 (n=17) > 100 (n=48)

Hybrid/multi-cloud 24% 63% 39%

Air-gapped 6% 15% 9%

Fast data pipelines 6% 21% 15%

AI/ML 18% 25% 7%

Non-ML AI 0% 17% 17%

Edge/IoT 6% 8% 2%

New cloud-native apps 53% 60% 7%

Lift and shift existing apps 18% 35% 18%

Modernize existing apps 47% 50% 3%

*Note: This question was only asked to respondents who answered "Yes"
to the question, "Does your organization run any Kubernetes clusters?"

PAGE 9TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Observations:

1. The most commonly reported improvements arising from Kubernetes use were "Deployment in general" (75%),
"Autoscaling" (62%), and "CI/CD" (54%), which were all selected as improvements by more than half of respondents.

2. About half of respondents said that Kubernetes improved "App modularity" (49%), "Building microservices" (48%), and
"Reliability" (48%). "Cost" was the most commonly reported disadvantage of Kubernetes (26%), which we discuss further
below. Other than "Cost," options regarding what Kubernetes worsened were selected by only 12% of respondents or fewer.

3. Most respondents believed "Security" to be neither improved nor diminished by Kubernetes (62%), a quarter said
Kubernetes improved security (25%), and only 12% said that Kubernetes worsened security at their organization. We
examine these results further in the next section of this report, "Kubernetes Pain Points."

4. While most respondents also indicated that "Cost" was neither an advantage nor a disadvantage of Kubernetes (52%),
"Cost" also had significantly more respondents claiming it as a disadvantage (26%) than any other option, and "Cost" was
the only option that more respondents selected as a disadvantage than as an advantage.

This data, on its own, helps to support the hypothesis that limited resources is a contributing factor to smaller
organizations being less likely to use Kubernetes than larger organizations, as we discussed previously. Interestingly,
however, respondents at organizations with < 100 employees were significantly less likely to say that Kubernetes
worsened costs at their organization (17%) than those at larger companies (33%), and were significantly more likely to
say that Kubernetes improved costs (33% at small organizations vs. 17% at large organizations).

KUBERNETES PAIN POINTS
Beyond the disadvantages to software or development that might be observed, we wanted to know if Kubernetes presents any
particularly glaring frustrations for the developers themselves. To find out what their biggest struggles are when working with
Kubernetes, we asked respondents:

What pain points have you encountered while working with Kubernetes?

Results (n=60):

Figure 7

Learning or
using kubectl

Maintaining
YAML files

Performance
tuning

CLI tooling
with

microservices

Other,
write in

Learning or
using Helm

Visualizing
what’s happening

at runtime

Security
0

20

40

60

KUBERNETES PAIN POINTS

Observations:

1. The most common Kubernetes pain points were "Performance tuning" (60%), "Maintaining YAML files" (55%), "Learning or
using Helm" (45%), and "Security" (44%). On average, respondents selected 3.03 pain points — with a median value of 3 —
out of the seven options listed.

2. As mentioned in the previous section, most respondents reported that security at their organization was neither
improved nor worsened by Kubernetes, yet close to half of respondents selected "Security" as a pain point.

Comparing these results, we found that a large majority of respondents who said that Kubernetes worsened security
at their organization found security to be a pain point (89%) — which is to be expected. But over half of respondents
who said that Kubernetes improved security found it to be a pain point as well (57%). 34% of respondents who believed
security was neither improved nor diminished found security to be a pain point. We believe these results may imply

PAGE 10TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

that developers are generally less concerned about the security capabilities of Kubernetes than they are about what it
takes to appropriately implement security in Kubernetes clusters.

3. "CLI tooling with microservices" was the least common pain point selected by a significant margin, which is especially
noteworthy when considering that 83% of respondents said that their organization runs microservices deployed on
Kubernetes clusters.

Research Target Three: Kubernetes Practices and Techniques
Motivation: Kubernetes is a rather versatile tool. Earlier, we looked at a wide variety of use cases for which Kubernetes can
be employed, but we wanted to know even more about how Kubernetes is being used. For this research target, we explored
questions related to the following areas:

• Environments – How often is Kubernetes run in development and production environments?

• Locations – Is Kubernetes being run more often on bare metal or virtual machines (VMs)?

• Workloads – What types of workloads do organizations generally expect their Kubernetes clusters to handle?

• Autoscalers – Which Kubernetes autoscalers are most prevalent?

KUBERNETES ENVIRONMENTS AND LOCATIONS
Firstly, we wanted to get an idea of "where" Kubernetes is being used, in a couple different senses of the word. For one, we tried
to discern where in the dev cycle Kubernetes is being run (i.e., how often it runs in development environments vs. production
environments). Furthermore, we attempted to find out where Kubernetes clusters are running in cloud environments (i.e., are
clusters more frequently run on bare metal, virtual machines, or a combination of both?). So we asked respondents:

Where does your organization run Kubernetes clusters?

and

Where do your Kubernetes clusters run?*

Results (n=70 and n=69, respectively):

Figure 8

KUBERNETES USE: DEV AND PROD ENVIRONMENTS

Development

Production

0 20 40 60 80 100

Figure 9

Bare metal Virtual machines I don't knowBoth
0

20

40

60

70

50

30

10

KUBERNETES CLUSTER LOCATIONS: BARE METAL vs. VIRTUAL MACHINE

Development

Production

*Note: These questions were only asked to respondents who answered "Yes" to the question, "Does your organization run any Kubernetes clusters?"

PAGE 11TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Observations:

1. A large majority of respondents (84%) said their organization runs Kubernetes in both development and production
environments. Only 9% of respondents said their organization runs Kubernetes solely in production, and only 7% said their
organization ran Kubernetes solely in development.

The extremely low sample sizes of respondents reporting development-only and production-only Kubernetes use
made the confidence levels for cross tabulation with other data too low for us to report on here. However, we believe
this data indicates a general consensus across organizations and software professionals that Kubernetes is sufficiently
mature for use throughout the SDLC.

2. Almost all respondents said their Kubernetes clusters run on "Virtual machines" in both development (91%) and
production (88%) environments. In development environments, 62% said Kubernetes runs on virtual machines only, and
29% said they have clusters running on both bare metal and VMs. In production, 64% said Kubernetes runs on VMs only,
and 23% said it runs on both bare metal and VMs.

This seems to imply that, more often than not, the ease of use afforded by VMs supersedes any performance gains or
orchestration layer simplification that bare metal provides, and that when bare metal is needed, a hybrid bare metal/
VM approach will often make more sense than bare metal alone.

KUBERNETES WORKLOADS AND AUTOSCALERS
We observed earlier that performance tuning is a major pain point for developers working with Kubernetes. On the other hand,
we saw that one of the biggest improvements developers noticed from Kubernetes use is autoscaling. We wanted to look
further into the types of workloads that respondents expect Kubernetes to run performatively, how often different Kubernetes
autoscalers are being used, and whether there is any correlation between the two. We asked:

What types of workloads does your organization run on Kubernetes clusters?

and

What autoscalers does your organization use in its Kubernetes clusters?*

Results (n=66):

Figure 10

Web
apps

CPU-
intensive

GPU-
intensive

Memory-
intensive

Other,
write in

Storage/
database-
intensive

Non-web
general
compute

0

20

40

60

80

100

WORKLOADS RUN ON KUBERNETES CLUSTERS

SEE FIGURE 11 ON NEXT PAGE

PAGE 12TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Figure 11

Vertical Pod
Autoscaler

Horizontal Pod
Autoscaler

Other,
write in

Cluster Pod
Autoscaler

0

20

40

60

80

AUTOSCALERS USED IN KUBERNETES CLUSTERS

Table 4

WORKLOADS USED WITH AUTOSCALERS*

Workloads

Autoscalers

Vertical Pod Horizontal Pod Cluster Pod Avg.

Web apps 86% 95% 95% 93%

CPU-intensive 21% 44% 50% 38%

GPU-intensive 7% 8% 15% 7%

Memory-intensive 29% 33% 50% 30%

Storage/database-intensive 36% 44% 50% 43%

Non-web general compute 36% 49% 50% 38%

n= 14 39 20 56

*Note: % of columns (table). The two aforementioned questions were only asked to respondents who answered "Yes" to the question,
"Does your organization run any Kubernetes clusters?"

Observations:

1. The vast majority of respondents said that their organizations run "Web applications" on Kubernetes (94%), which is
unsurprising considering the sheer volume of web apps currently being created or maintained. "Storage/database-
intensive" (42%), "CPU-intensive" (41%), and "Non-web general compute" (38%) workloads were moderately popular
options. Very few respondents said their organization uses Kubernetes for "GPU-intensive" workloads (9%).

2. Respondents at small organizations (< 100 employees) were significantly less likely than respondents at larger
organizations to report that their company uses Kubernetes for "Memory-intensive" workloads (6% vs. 38%) and "CPU-
intensive" workloads (24% vs. 48%), though it seems likely that these correlations stem from a higher likelihood that larger
organizations' applications deal with these types of workloads in the first place.

3. Horizontal autoscaling (67%) was a far more popular autoscaling method than cluster (35%) or vertical (24%) — a pattern
we have seen for the past two years as well.

This reinforces the hypothesis from our 2021 Kubernetes in the Enterprise "Key Research Findings" that, because
horizontal autoscalers are "perhaps the most opinionated, least requiring of accurate guessing during cluster
configuration," their overwhelming popularity "may suggest that Kubernetes is being used to pluck relatively low-
hanging cluster management fruit."

PAGE 13TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

4. Respondents who said that their organizations use vertical autoscalers were much less likely to report that their
Kubernetes clusters run "CPU-intensive" (21%), "Storage/database-intensive" (36%), and "Non-web general compute" (36%)
workloads compared to respondents at organizations using horizontal (44%, 44%, and 49%, respectively) and cluster (50%
each) autoscalers.

5. Additionally, respondents at organizations using cluster autoscalers were much more likely to use Kubernetes for "Memory-
intensive" workloads (50%) than respondents at organizations using horizontal (33%) and vertical (29%) autoscalers.

Future Research
Our analysis here only touched the surface of the available data, and we will look to refine and expand our Kubernetes survey as
we produce further Trend Reports. Some of the topics we didn't get to in this report, but were incorporated in our survey, include:

• Kubernetes constructs for maintaining state

• Kubernetes security threats

• Kubernetes monitoring and monitoring tools

• Application vs. configuration code in Kubernetes

• Usage/traffic patterns served by Kubernetes clusters

Please contact publications@dzone.com if you would like to discuss any of our findings or supplementary data.

G. Ryan Spain, Freelance Software Engineer, former Engineer & Editor at DZone
@grspain on DZone, GitHub, and GitLab | gryanspain.com

G. Ryan Spain lives on a beautiful two-acre farm in McCalla, Alabama with his lovely wife and adorable
dog. He is a polyglot software engineer with an MFA in poetry, a die-hard Emacs fan and Linux user, a
lover of The Legend of Zelda, a journeyman data scientist, and a home cooking enthusiast. When he isn't

programming, he can often be found playing Super Auto Pets with a glass of red wine or a cold beer.

mailto:publications%40dzone.com?subject=Trend%20Report%20research%20inquiry
mailto:https://dzone.com/users/1287915/grspain.html?subject=
mailto:https://github.com/grspain?subject=
mailto:https://gitlab.com/grspain?subject=
mailto:http://gryanspain.com?subject=

PAGE 14TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

PARTNER CASE STUDY

In the new era of accelerating AI transformation, one AI company is pioneering
a full-stack generative AI hardware and software platform, enabling quick
deployment and operation of deep learning models in customer data centers.

AI Pioneer's custom-chip AI hardware vastly outperforms traditional GPUs,
enabling their customers' data scientists to train models faster and generate
high-quality text, images, and content from confidential data.

Challenge
In preparation for the release of their managed platform, AI Pioneer's DevOps
teams were tasked with finding an efficient method to scale delivery and
operations across their extensive base of enterprise customers. A standardized
approach was essential to remove complexity and streamline rollouts.

To accomplish this, they needed to buy or build a Kubernetes distribution
solution and develop drivers for their custom-chip hardware. They recognized
that managing Kubernetes in house wouldn't be cost-effective and would delay
the launch of their new offering by several months.

Solution
The customer turned to Platform9 Managed Kubernetes for automated delivery
of their AI models and associated software to customer locations. They used
Platform9 APIs for end-to-end Kubernetes provisioning, easing deployment
and creating a scalable standard rollout mechanism for all customers.

Platform9's centralized management plane helped remotely upgrade
Kubernetes versions and monitor the health of all customer deployments.

Results
AI Pioneer exceeded rollout targets by more than 200% in the first six weeks.
This was due to meticulous onboarding by Platform9 solution architects, who
were there every step of the way, helping AI Pioneer automate end-to-end
deployments with Platform9's CLIs and APIs. They provided examples, shared
best practices, and aided in configuration and architecture decisions.

Platform9's self-service and flexible deployment for SaaS and air-gapped
configurations ensured that AI Pioneer could easily meet diverse customer
requirements for security and confidentiality. When a production problem
arose during the initial rollout, Platform9's outstanding support team worked
tirelessly around the clock to quickly diagnose and resolve the issue.

*Undisclosed client name

COMPANY
AI Pioneer

COMPANY SIZE
370 employees

INDUSTRY
AI and Deep Learning

PRODUCTS USED
Platform9 Managed Kubernetes

PRIMARY OUTCOME
AI Pioneer outperformed their rollout
targets by more than 200% in the first
six weeks after the launch of their
new managed platform powered by
Platform9 Managed Kubernetes.

"Platform9's team demonstrated
one of the highest levels of customer
service I have experienced. Their
commitment, diligence, and great
sense of ownership ensured the
successful and timely rollout of our
new managed AI platform."

—VP of Engineering,
AI Pioneer

CREATED IN PARTNERSHIP WITH

Case Study: AI Pioneer*

Powered by Kubernetes Automation, Scaling, and Upgrades Across 100s of Customers

D sciverntheniolynpurpise-bu ltn

KuberoetesnnirnMLOpsnteams onyiurn

datanceoternirncilication onrastructure

Learn more: www.platform9.com Contact us: info@platform9.com

Ddanid gwhntgl r grntng

hcndiththgiddrgt gt nniga rdahg

onhtd gnihtdnrg oganinnning

Kr d idtdhgc apadxntdha

Faster inntvaatn

Pt dnaanidhKr d idtdhg

 pd nt ihhwnthh rnat-nig 2//g

p nctidg da tdga int ninig

zd -t rchgrpn nrdhignirga da

Simolifee toeraatns

Fnid-tridgnirgt nnigidwga rdahg

wnth rtgnitd rpt ihag in lg

hnnhgrptadgnirgnrn nitddrg

Kr d idtdhgPL ha

Always-available infra

 rrnt inaaligwdg dcdnidrgp dhtnn rhg nrndhgnigc itnnid g chdht nt iigc itnnid ganinndaditgnirgnnnPa

g2’snSummern2023nrepirt:nUsersnraoknplaftirmn4.8/5

Ldn igh wgt g drrcdgthdg pd nt inag r rdig og riining I/MLg

Kr d idtdhgnigl r g wigrntncditd gnirgc a cnt ignio nht rctr da

Get a free ciosultatio

TurbichargenAI/MLnIooivation

#1K8s4AIML

https://hubs.la/Q025lLKx0
http://www.platform9.com/
mailto:info%40platform9.com?subject=

PAGE 16TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes celebrates its ninth year since the initial release this year, a significant milestone for a project that has
revolutionized the container orchestration space. During the time span, Kubernetes has become the de facto standard for
managing containers at scale. Its influence can be found far and wide, evident from various architectural and infrastructure
design patterns for many cloud-native applications.

As one of the most popular and successful open-source projects in the infrastructure space, Kubernetes offers a ton of choices
for users to provision, deploy, and manage Kubernetes clusters and applications that run on them. Today, users can quickly spin
up Kubernetes clusters from managed providers or go with an open-source solution to self-manage them. The sheer number
of these options can be daunting for engineering teams deciding what makes the most sense for them.

In this Trend Report article, we will take a look at the current state of the managed Kubernetes offerings as well as options for
self-managed clusters. With each option, we will discuss the pros and cons as well as recommendations for your team.

Overview of Managed Kubernetes Platforms
Managed Kubernetes offerings from the hyperscalers (e.g., Google Kubernetes Engine, Amazon Elastic Kubernetes Service,
Azure Kubernetes Service) remain one of the most popular options for administering Kubernetes. The 2019 survey of the
Kubernetes landscape from the Cloud Native Computing Foundation (CNCF) showed that these services from each of the cloud
providers make up three of the top five options that enterprises use to manage containers. More recent findings from CloudZero
illustrating increased cloud and Kubernetes adoption further solidifies the popularity of managed Kubernetes services.

All of the managed Kubernetes platforms take care of the control plane components such as kube-apiserver, etcd, kube-
scheduler, and kube-controller-manager. However, the degree to which other aspects of operating and maintaining a
Kubernetes cluster are managed differs for each cloud vendor.

For example, Google offers a more fully-managed service with GKE Autopilot, where Google manages the cluster's underlying
compute, creating a serverless-like experience for the end user. They also provide the standard mode where Google takes
care of patching and upgrading of the nodes along with bundling autoscaler, load balancer controller, and observability
components, but the user has more control over the infrastructure components.

On the other end, Amazon's offering is more of a hands-off, opt-in approach where most of the operational burden is offloaded
to the end user. Some critical components like CSI driver, CoreDNS, VPC CNI, and kube-proxy are offered as managed add-ons
but not installed by default.

Figure 1: Managed Kubernetes platform comparison

By offloading much of the maintenance and operational tasks to the cloud provider, managed Kubernetes platforms can offer
users a lower total cost of ownership (especially when using something like a per-Pod billing model with GKE Autopilot) and
increased development velocity. Also, by leaning into cloud providers' expertise, teams can reduce the risk of incorrectly setting
Kubernetes security settings or fault-tolerance that could lead to costly outages. Since Kubernetes is so complex and notorious
for a steep learning curve, using a managed platform to start out can be a great option to fasttrack Kubernetes adoption.

The State of Kubernetes:
Self-Managed vs. Managed Platforms
By Yitaek Hwang, Software Engineer at NYDIG

https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.cloudzero.com/blog/cloud-computing-statistics

PAGE 17TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

On the other hand, if your team has specific requirements due to security, compliance, or even operating environment (e.g.,
bare metal, edge computing, military/medical applications), a managed Kubernetes platform may not fit your needs. Note that
even though Google and Amazon have on-prem products (GKE on-prem and EKS anywhere), the former requires VMware's
server virtualization software, and the latter is an open-source, self-managed option.

Finally, while Kubernetes lends itself to application portability, there is still some degree of vendor lock-in by going with a
managed option that you should be aware of.

Overview of Self-Managed Kubernetes Options
Kubernetes also has a robust ecosystem of self-managing Kubernetes clusters. First, there's the manual route of installing
"Kubernetes the Hard Way," which walks through all the steps needed for bootstrapping a cluster step by step. In practice, most
teams use a tool that abstracts some of the setup such as kops, kubeadm, kubespray, or kubicorn. While each tool behaves
slightly differently, they all automate the infrastructure provisioning, support maintenance functions like upgrades or scaling,
as well as integrate with cloud providers and/or bare metal.

The biggest advantage of going the self-managed route is that you have complete control over how you want your Kubernetes
cluster to work. You can opt to run a small cluster without a highly available control plane for less critical workloads and save
on cost. You can customize the CNI, storage, node types, and even mix and match across multiple cloud providers if need be.
Finally, self-managed options are more prevalent in non-cloud environments, namely edge or on-prem.

On the other hand, operating a self-managed cluster can be a huge burden for the infrastructure team. Even though open-
source tools have come a long way to lower the burden, it still requires a non-negligible amount of time and expertise to justify
the cost against going with a managed option.

Table 1

PROS AND CONS OF MANAGED vs. SELF-MANAGED KUBERNETES

Options Pros Cons

Managed • Lower TCO

• Increased development velocity

• Lean on security best practices

• Inherit cloud provider's expertise

• Less maintenance burden

• Fully customizable to satisfy
compliance requirements

• Can use latest features

• Flexible deployment schemes

Self-managed • May not be available on-prem or on the edge

• Not open to modification

• Requires support from service provider in
case of outage

• Requires significant Kubernetes
knowledge and expertise

• Maintenance burden can be high

Considerations for Managed vs. Self-Managed Kubernetes
For most organizations running predominantly on a single cloud, going with the managed offering makes the most sense.
While there is a cost associated with opting for the managed service, it is a nominal fee ($0.10 per hour per cluster) compared
to the engineer hours that may be required for maintaining those clusters. The rest of the cost is billed the same way as using
VMs, so cost is usually a non-factor. Also, note that there will still be a non-negligible amount of work to do if you go with a
vendor who provides a less managed offering.

There are few use cases where going with a self-managed Kubernetes option makes sense:

• If you need to run on-prem or on the edge, you may decide that the on-prem offerings from the cloud providers may
not fit your needs. If you are running on-prem, likely this means that either cost was a huge factor or there is a tangible
need to be on-prem (i.e., applications must run closer to where it's deployed). In these scenarios, you likely already have an
infrastructure team with significant Kubernetes experience or the luxury of growing that team in house.

• Even if you are not running on-prem, you may consider going with a self-managed option if you are running on multiple
clouds or a SaaS provider that must offer a flexible Kubernetes-as-a-Service type of product. While you can run different
variants of Kubernetes across clouds, it may be desirable to use a solution like Cluster API to manage multiple Kubernetes
clusters in a consistent manner. Likewise, if you are offering Kubernetes as a Service, then you may need to support more
than the managed Kubernetes offerings.

https://github.com/kelseyhightower/kubernetes-the-hard-way
http://kubicorn.io/
https://cluster-api.sigs.k8s.io/

PAGE 18TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

• Also, as mentioned before, compliance may play a big role in the decision. You may need to support an application in
regions where major US hyperscalers do not operate in (e.g., China) or where a more locked-down version is required (e.g.,
military, banking, medical).

• Finally, you may work in industries where there is a need for either cutting edge support or massive modifications to fit
the application's needs. For example, for some financial institutions, there may be a need for confidential computing.
While the major cloud providers have some level of support for them at the time of writing, it is still limited.

Conclusion
Managing and operating Kubernetes at scale is no easy task. Over the years, the community has continually innovated and
produced numerous solutions to make that process easier. On one hand, we have massive support from major hyperscalers for
production-ready, managed Kubernetes services. Also, we have more open-source tools to self-manage Kubernetes if need be.

In this article, we went through the pros and cons of each approach, breaking down the state of each option along the way.
While most users will benefit from going with a managed Kubernetes offering, opting for a self-managed option is not only
valid but sometimes necessary. Make sure your team either has the expertise or the resources required to build it in house
before going with the self-managed option.

Additional reading:

• CNCF Survey 2019: Deployments Are Getting Larger as Cloud Native Adoption Becomes Mainstream

• "101+ Cloud Computing Statistics That Will Blow Your Mind (Updated 2023)" by Cody Slingerland, Cloud Zero

Yitaek Hwang, Software Engineer at NYDIG
@yitaek on DZone

Yitaek is a software engineer at NYDIG, applying new cryptographic protocols to improve the custody of
Bitcoin. He formerly worked at Axoni and Leverege, mainly building internal development platforms and
architecting cloud infrastructure. He writes about cloud, DevOps/SRE, and crypto topics on DZone.

https://www.cncf.io/wp-content/uploads/2020/08/CNCF_Survey_Report.pdf
https://www.cloudzero.com/blog/cloud-computing-statistics
https://dzone.com/users/4510103/yitaek.html

PAGE 19TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

Cloud-native architecture is a transformative approach to designing and managing applications. This type of architecture
embraces the concepts of modularity, scalability, and rapid deployment, making it highly suitable for modern software
development. Though the cloud-native ecosystem is vast, Kubernetes stands out as its beating heart. It serves as a container
orchestration platform that helps with automatic deployments and the scaling and management of microservices. Some of
these features are crucial for building true cloud-native applications.

In this article, we explore the world of containers and microservices in Kubernetes-based systems and how these technologies
come together to enable developers in building, deploying, and managing cloud-native applications at scale.

The Role of Containers and Microservices in Cloud-Native Environments
Containers and microservices play pivotal roles in making the principles of cloud-native architecture a reality.

Figure 1: A typical relationship between containers and microservices

Here are a few ways in which containers and microservices turn cloud-native architectures into a reality:

• Containers encapsulate applications and their dependencies. This encourages the principle of modularity and results in
rapid development, testing, and deployment of application components.

• Containers also share the host OS, resulting in reduced overhead and a more efficient use of resources.

• Since containers provide isolation for applications, they are ideal for deploying microservices. Microservices help in
breaking down large monolithic applications into smaller, manageable services.

• With microservices and containers, we can scale individual components separately. This improves the overall fault
tolerance and resilience of the application as a whole.

Despite their usefulness, containers and microservices also come with their own set of challenges:

• Managing many containers and microservices can become overly complex and create a strain on operational resources.

• Monitoring and debugging numerous microservices can be daunting in the absence of a proper monitoring solution.

• Networking and communication between multiple services running on containers is challenging. It is imperative to
ensure a secure and reliable network between the various containers.

Scaling Up With Kubernetes
Cloud-Native Architecture for Modern Applications

By Saurabh Dashora, Software Architect at Progressive Coder

PAGE 20TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

How Does Kubernetes Make Cloud Native Possible?
As per a survey by CNCF, more and more customers are leveraging Kubernetes as the core technology for building cloud-
native solutions. Kubernetes provides several key features that utilize the core principles of cloud-native architecture: automatic
scaling, self-healing, service discovery, and security.

AUTOMATIC SCALING
A standout feature of Kubernetes is its ability
to automatically scale applications based on
demand. This feature fits very well with the
cloud-native goals of elasticity and scalability.
As a user, we can define scaling policies for our
applications in Kubernetes. Then, Kubernetes
adjusts the number of containers and Pods to
match any workload fluctuations that may arise
over time, thereby ensuring effective resource
utilization and cost savings.

SELF-HEALING
Resilience and fault tolerance are key properties
of a cloud-native setup. Kubernetes excels in
this area by continuously monitoring the health of containers and Pods. In case of any Pod failures, Kubernetes takes remedial
actions to ensure the desired state is maintained. It means that Kubernetes can automatically restart containers, reschedule
them to healthy nodes, and even replace failed nodes when needed.

SERVICE DISCOVERY
Service discovery is an essential feature of a microservices-based cloud-native environment. Kubernetes offers a built-in service
discovery mechanism. Using this mechanism, we can create services and assign labels to them, making it easier for other
components to locate and communicate with them. This simplifies the complex task of managing communication between
microservices running on containers.

SECURITY
Security is paramount in cloud-native systems and Kubernetes provides robust mechanisms to ensure the same. Kubernetes
allows for fine-grained access control through role-based access control (RBAC). This certifies that only authorized users
can access the cluster. In fact, Kubernetes also supports the integration of security scanning and monitoring tools to detect
vulnerabilities at an early stage.

Advantages of Cloud-Native Architecture
Cloud-native architecture is extremely important for modern organizations due to the evolving demands of software
development. In this era of digital transformation, cloud-native architecture acts as a critical enabler by addressing the key
requirements of modern software development. The first major advantage is high availability. Today's world operates 24/7, and
it is essential for cloud-native systems to be highly available by distributing components across multiple servers or regions in
order to minimize downtime and ensure uninterrupted service delivery.

The second advantage is scalability to support fluctuating workloads based on user demand. Cloud-native applications
deployed on Kubernetes are inherently elastic, thereby allowing organizations to scale resources up or down dynamically.
Lastly, low latency is a must-have feature for delivering responsive user experiences. Otherwise, there can be a tremendous loss
of revenue. Cloud-native design principles using microservices and containers deployed on Kubernetes enable the efficient use
of resources to reduce latency.

ARCHITECTURE TRENDS IN CLOUD NATIVE AND KUBERNETES
Cloud-native architecture with Kubernetes is an ever-evolving area, and several key trends are shaping the way we build and
deploy software. Let's review a few important trends to watch out for.

The use of Kubernetes operators is gaining prominence for stateful applications. Operators extend the capabilities of
Kubernetes by automating complex application-specific tasks, effectively turning Kubernetes into an application platform.
These operators are great for codifying operational knowledge, creating the path to automated deployment, scaling, and
management of stateful applications such as databases. In other words, Kubernetes operators simplify the process of running
applications on Kubernetes to a great extent.

Figure 2: Kubernetes managing multiple containers within the cluster

https://www.cncf.io/announcements/2022/02/10/cncf-sees-record-kubernetes-and-container-adoption-in-2021-cloud-native-survey/
https://www.cncf.io/blog/2022/06/15/kubernetes-operators-what-are-they-some-examples/

PAGE 21TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Another significant trend is the rise of serverless computing on Kubernetes due to the growth of platforms like Knative. Over
the years, Knative has become one of the most popular ways to build serverless applications on Kubernetes. With this approach,
organizations can run event-driven and serverless workloads alongside containerized applications. This is great for optimizing
resource utilization and cost efficiency. Knative's auto-scaling capabilities make it a powerful addition to Kubernetes.

Lastly, GitOps and Infrastructure as Code (IaC) have emerged as foundational practices for provisioning and managing cloud-
native systems on Kubernetes. GitOps leverages version control and declarative configurations to automate infrastructure
deployment and updates. IaC extends this approach by treating infrastructure as code.

Best Practices for Building Kubernetes Cloud-Native Architecture
When building a Kubernetes-based cloud-native system, it's great to follow some best practices:

• Observability is a key practice that must be followed. Implementing comprehensive monitoring, logging, and tracing
solutions gives us real-time visibility into our cluster's performance and the applications running on it. This data is
essential for troubleshooting, optimizing resource utilization, and ensuring high availability.

• Resource management is another critical practice that should be treated with importance. Setting resource limits for
containers helps prevent resource contention and ensures a stable performance for all the applications deployed on a
Kubernetes cluster. Failure to manage the resource properly can lead to downtime and cascading issues.

• Configuring proper security policies is equally vital as a best practice. Kubernetes offers robust security features like
role-based access control (RBAC) and Pod Security Admission that should be tailored to your organization's needs.
Implementing these policies helps protect against unauthorized access and potential vulnerabilities.

• Integrating a CI/CD pipeline into your Kubernetes cluster streamlines the development and deployment process. This
promotes automation and consistency in deployments along with the ability to support rapid application updates.

Conclusion
This article has highlighted the significant role of Kubernetes in shaping modern cloud-native architecture. We've explored
key elements such as observability, resource management, security policies, and CI/CD integration as essential building blocks
for success in building a cloud-native system. With its vast array of features, Kubernetes acts as the catalyst, providing the
orchestration and automation needed to meet the demands of dynamic, scalable, and resilient cloud-native applications.

As readers, it's crucial to recognize Kubernetes as the linchpin in achieving these objectives. Furthermore, the takeaway is to
remain curious about exploring emerging trends within this space. The cloud-native landscape continues to evolve rapidly, and
staying informed and adaptable will be key to harnessing the full potential of Kubernetes.

Additional reading:

• CNCF Annual Survey 2021

• CNCF Blog

• "Why Google Donated Knative to the CNCF" by Scott Carey

• Getting Started With Kubernetes Refcard by Alan Hohn

• "The Beginner's Guide to the CNCF Landscape" by Ayrat Khayretdinov

Saurabh Dashora, Software Architect at Progressive Coder
@saurabh.dashora on DZone | @saurabh-dashora on LinkedIn

I'm a full-stack architect, tech writer, and guest author in various publications. I have expertise building
distributed systems across multiple business domains such as banking, autonomous driving, and retail.
Throughout my career, I have worked at several large organizations. I also run a tech blog on cloud,

microservices, and web development, where I have written hundreds of articles. Apart from work, I enjoy reading books and
playing video games.

https://knative.dev/docs/
https://www.infoworld.com/article/3652689/why-google-donated-knative-to-the-cncf.html
https://www.cncf.io/reports/cncf-annual-survey-2021/
https://www.cncf.io/blog/
https://www.infoworld.com/article/3652689/why-google-donated-knative-to-the-cncf.html
https://dzone.com/refcardz/getting-started-kubernetes
https://www.cncf.io/blog/2018/11/05/beginners-guide-cncf-landscape/
https://dzone.com/users/3576974/saurabhdashora.html
https://www.linkedin.com/in/saurabh-dashora/

PAGE 22TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes, a true game-changer in the domain of modern application development, has revolutionized the way we manage
containerized applications. Some people tend to think that Kubernetes is an opposing approach to serverless. This is probably
because of the management bound in deploying applications to Kubernetes — the node management, service configuration,
load management, etc. Serverless computing, celebrated for its autoscaling power and cost-efficiency, is known for its easy
application development and operation. Yet, the complexities Kubernetes introduces have led to a quest for a more automated
approach — this is precisely where serverless computing steps into Kubernetes.

In this exploration, we'll delve into the serverless trend advantages and highlight key open-source solutions that bridge the gap
between serverless and Kubernetes, examining their place in the tech landscape.

Factors Driving Kubernetes' Popularity
Kubernetes has experienced a meteoric rise in popularity among experienced developers, driven by several factors:

• Extensibility – Kubernetes offers custom resource definitions (CRDs) that empower developers to define and
manage complex application architectures according to their requirements.

• Ecosystem – Kubernetes fosters a rich ecosystem of tools and services, enhancing its adaptability to various
cloud environments.

• Declarative configuration – Kubernetes empowers developers through declarative configuration, which allows
developers to define desired states and lets the system handle the rest.

Kubernetes Challenges: Understanding the Practical Complexities
That being said, experienced developers navigating the intricate landscape of Kubernetes are familiar with the complexities of
setting up, configuring, and maintaining Kubernetes clusters. One of the common challenges is scaling. While manual scaling
is becoming a thing of the past, autoscaling has become the de facto standard, with organizations who deploy in Kubernetes
benefiting from native autoscaling capabilities such as horizontal pod autoscaling (HPA) and vertical pod autoscaling (VPA).

Figure 1: HorizontalPodAutoscaler

Nonetheless, these solutions are not without their constraints. HPA primarily relies on resource utilization metrics (e.g., CPU
and memory) for scaling decisions. For applications with unique scaling requirements tied to specific business logic or external
events, HPA may not provide the flexibility needed.

Furthermore, consider the challenge HPA faces in scaling down to zero Pods. Scaling down to zero Pods can introduce
complexity and safety concerns. It requires careful handling of Pod termination to ensure that in-flight requests or processes
are not disrupted, which can be challenging to implement safely in all scenarios.

Understanding Serverless Computing
Taking a step back in time to 2014, AWS introduced serverless architectures, which fully exemplified the concept of billing
accordingly and using resources only when, how much, and for as long as they're needed. This approach offers two significant

Kubernetes Today
The Growing Role of Serverless in Modern Kubernetes Clusters

By Gal Cohen, Backend Engineer at Firefly

PAGE 23TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

benefits: Firstly, it frees up teams from worrying about how applications run, enabling them to concentrate solely on business
matters; secondly, it minimizes the hardware, environmental impact, and thus has a positive financial impact on running
applications to the absolute minimum.

It's essential to understand that "serverless" doesn't
imply that there is no server. Instead, it means
you don't have to concern yourself with the server
responsible for executing tasks; your focus remains
solely on the tasks themselves.

Serverless Principles in Kubernetes
Serverless computing is on the rise, and in some
ways, it's getting along with the growing popularity of
event-driven architecture, which makes this pairing
quite potent.

Event-driven designs are becoming the favored
method for creating robust apps that can respond
to real-world events in real time. In an event-driven
pattern, the crucial requirement is the capability to respond to varying volumes of events at different rates and to dynamically
scale your application accordingly. This is where serverless technology perfectly aligns and dynamically scales the application
infrastructure accordingly.

When you combine the event-driven approach with serverless platforms, the benefits are twofold: You not only save on costs
by paying only for what you need, but you also enhance your app's user experience and gain a competitive edge as it syncs
with real-world happenings.

Who Needs Serverless in Kubernetes?
In practical terms, serverless integration in Kubernetes is beneficial for software development teams aiming to simplify
resource management and reduce operational complexity. Additionally, it offers advantages to organizations looking to
optimize infrastructure costs while maintaining agility in deploying and scaling applications.

EXPLORE A REAL-WORLD SCENARIO
To illustrate its practicality, imagine a data processing pipeline designed around the producer-consumer pattern. The producer-
consumer pattern allows independent operation of producers and consumers, efficient resource utilization, and scalable
concurrency. By using a buffer and coordination mechanisms, it optimizes resource usage and ensures orderly data processing.
In this architectural context, Kubernetes and KEDA demonstrate significant potential.

PRODUCER-CONSUMER SERVERLESS ARCHITECTURE WITH KEDA
The system works as the following — producers generate data that flows into a message queue, while consumers handle
this data asynchronously. KEDA dynamically fine tunes the count of consumer instances in response to changes within the
message queue's activity, ensuring optimal resource allocation and performance.

Figure 3: Producer-consumer architecture based on KEDA

Figure 2: Serverless advantages

https://github.com/kedacore

PAGE 24TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

This efficient serverless architecture includes:

• Message queue – Selected message queue system that is compatible with Kubernetes. Once chosen, it has to be
configured to enable accessibility for both producers and consumers.

• Producer – The producer component is a simple service that is responsible for generating the tasks and pushing data into
the message queue.

• Consumer – Consumer applications are capable of pulling data asynchronously from the message queue. These
applications are designed for horizontal scalability to handle increased workloads effectively. The consumers are deployed
as Pods in Kubernetes and utilized by KEDA for dynamic scaling based on queue activity.

 – It's essential to note that while the application operates under KEDA's management, it remains unaware of this fact.
Other than that, in this kind of dynamic scale, it is important to highly prioritize robust error handling, retries, and
graceful shutdown procedures within the consumer application to ensure reliability and fault tolerance.

• KEDA – The KEDA system contains scalers that are tailored to the message queue and scaling rules that cater to the
system's unique requirements. KEDA offers multiple options to configure the events delivery to the consumers on various
metrics such as queue length, message age, or other relevant indicators.

 – For example, if we choose setting the queueLength as target and if one Pod can effectively process 10 messages, you
can set the queueLength target to 10. In practical terms, this means that if the actual number of messages in the
queue exceeds this threshold, say it's 50 messages, the scaler will automatically scale up to five Pods to efficiently
handle the increased workload. Other than that, an upper limit can be configured by the maxReplicaCount attribute
to prevent excessive scaling.

 – The triggers are configured by the following format:

triggers:
- type: rabbitmq
 metadata:
 host: amqp://localhost:5672/vhost
 protocol: auto
 mode: QueueLength
 value: "100.50"
 activationValue: "10.5"
 queueName: testqueue
 unsafeSsl: true

Let's go over this configuration: It sets up a trigger for RabbitMQ queue activity. This monitors the testqueue and activates
when the queue length exceeds the specified threshold of 100.50. When the queue length drops below 10.5, the trigger
deactivates. The configuration includes the RabbitMQ server's connection details, using the auto protocol detection and
potentially unsafe SSL settings. This setup enables automated scale in response to queue length changes.

The architecture achieves an effortlessly deployable and intelligent solution, allowing the code to concentrate solely on
essential business logic without the distraction of scalability concerns. This was just an example; the producer-consumer
serverless architecture can be implemented through a variety of robust tools and platforms other than KEDA. Let's briefly
explore another solution using Knative.

EXAMPLE: ARCHITECTURE BASED ON KNATIVE
The implementation of the Knative-based system distinguishes itself by assuming the responsibility for data delivery
management, in contrast to KEDA, which does not handle data delivery and requires you to set up data retrieval. Prior to
deployment of the Knative-based system, it is imperative to ensure its environment is equipped with Knative Serving and
Eventing components.

Figure 4: Producer-consumer architecture based on Knative

https://www.rabbitmq.com/
https://github.com/knative

PAGE 25TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

The architecture can include:

• Message broker – Selected message queue that seamlessly integrates as a Knative Broker like Apache Kafka or RabbitMQ.

• Producer – The producer component is responsible for generating the tasks and dispatching them to a designated
message queue within the message broker, implemented as Knative Service.

• Trigger – The Knative trigger establishes the linkage between the message queue and the consumer, ensuring a
seamless flow of messages from the broker to the consumer service.

• Consumer – The consumer component is configured to efficiently capture these incoming messages from the queue
through the Knative trigger, implemented as Knative Service.

All of this combined results in an event-driven data processing application that leverages Knative's scaling capabilities. The
application automatically scales and adapts to the ever-evolving production requirements of the real world.

Indeed, we've explored solutions that empower us to design and construct serverless systems within Kubernetes. However, the
question that naturally arises is: What's coming next for serverless within the Kubernetes ecosystem?

The Future of Serverless in Kubernetes
The future of serverless in Kubernetes is undeniably promising, marked by recent milestones such as KEDA's acceptance as a
graduated project and Knative's incubating project status. This recognition highlights the widespread adoption of serverless
concepts within the Kubernetes community. Furthermore, the robust support and backing from major industry players
underscores the significance of serverless in Kubernetes. Large companies have shown their commitment to this technology
by providing commercial support and tailored solutions.

It's worth highlighting that the open-source communities behind projects like KEDA and Knative are the driving force
behind their success. These communities of contributors, developers, and users actively shape the projects' futures, fostering
innovation and continuous improvement. Their collective effort ensures that serverless in Kubernetes remains dynamic,
responsive, and aligned with the ever-evolving needs of modern application development.

In short, these open-source communities promise a bright and feature-rich future for serverless within Kubernetes, making it
more efficient, cost-effective, and agile.

Gal Cohen, Backend Engineer at Firefly
@Galco on DZone | @galco5 on LinkedIn

Gal Cohen is a software engineer at Firefly, boasting years of experience in cloud and engineering. She's
dedicated to disseminating her DevOps expertise through technical articles, videos, and social media.
Her passion lies in DevOps practices and cloud-native technologies. Before joining Firefly, Gal served in

the Elite Intelligence unit 8200.

https://kafka.apache.org/
https://dzone.com/users/4989920/galco.html
https://www.linkedin.com/in/galco5/

PAGE 26TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes Is Everywhere
By Daniel Stori, Software Development Manager at AWS

Daniel Stori, Software Development Manager at AWS
@Daniel Stori on DZone | @turnoff_us on X (Twitter) | turnoff.us

Passionate about computing since writing my first lines of code in Basic on Apple 2, I share my time
raising my young daughter and working on AWS Cloud Quest and AWS Industry Quest, a fun learning
experience based on 3D games. In my (little) spare time, I like to make comics related to programming,

operating systems, and funny situations in the routine of an IT professional.

https://dzone.com/users/1189863/Daniel+Stori.html
https://twitter.com/turnoff_us
https://turnoff.us/

PAGE 27TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes streamlines cloud operations by automating key tasks, specifically deploying, scaling, and managing containerized
applications. With Kubernetes, you have the ability to group hosts running containers into clusters, simplifying cluster
management across public, private, and hybrid cloud environments.

AI/ML and Kubernetes work together seamlessly, simplifying the deployment and management of AI/ML applications.
Kubernetes offers automatic scaling based on demand and efficient resource allocation, and it ensures high availability
and reliability through replication and failover features. As a result, AI/ML workloads can share cluster resources efficiently
with fine-grained control. Kubernetes' elasticity adapts to varying workloads and integrates well with CI/CD pipelines for
automated deployments. Monitoring and logging tools provide insights into AI/ML performance, while cost-efficient resource
management optimizes infrastructure expenses. This partnership streamlines the AI/ML development process, making it agile
and cost-effective.

Let's see how Kubernetes can join forces with AI/ML.

The Intersection of AI/ML and Kubernetes
The partnership between AI/ML and Kubernetes empowers organizations to deploy, manage, and scale AI/ML workloads
effectively. However, running AI/ML workloads presents several challenges, and Kubernetes addresses those challenges
effectively through:

• Resource management – This allocates and scales CPU and memory resources for AI/ML Pods, preventing contention
and ensuring fair distribution.

• Scalability – Kubernetes adapts to changing AI/ML demands with auto-scaling, dynamically expanding or contracting clusters.

• Portability – AI/ML models deploy consistently across various environments using Kubernetes' containerization
and orchestration.

• Isolation – Kubernetes isolates AI/ML workloads within namespaces and enforces resource quotas to avoid interference.

• Data management – Kubernetes simplifies data storage and sharing for AI/ML with persistent volumes.

• High availability – This guarantees continuous availability through replication, failover, and load balancing.

• Security – Kubernetes enhances security with features like RBAC and network policies.

• Monitoring and logging – Kubernetes integrates with monitoring tools like Prometheus and Grafana for real-time
AI/ML performance insights.

• Deployment automation – AI/ML models often require frequent updates. Kubernetes integrates with CI/CD pipelines,
automating deployment and ensuring that the latest models are pushed into production seamlessly.

Let's look into the real-world use cases to better understand how companies and products can benefit from Kubernetes and AI/ML.

Table 1

REAL-WORLD USE CASES

Use Case Examples

Recommendation systems Personalized content recommendations in streaming services, e-commerce, social media, and news apps

Image and video analysis Automated image and video tagging, object detection, facial recognition, content moderation,
and video summarization

Natural language
processing (NLP)

Sentiment analysis, chatbots, language translation, text generation, voice recognition, and
content summarization

From Data to Insights:
Kubernetes-Powered AI/ML in Action
Fine-Grained Control, Security, and Elasticity for AI/ML Workloads

By Boris Zaikin, Lead Solution Architect at CloudAstro GmbH

https://www.google.com/url?q=https://prometheus.io/&sa=D&source=editors&ust=1697738330738313&usg=AOvVaw32CDUJRs0qG_igEip_CM-t
https://www.google.com/url?q=https://grafana.com/&sa=D&source=editors&ust=1697738330738498&usg=AOvVaw134yE-cxAR3rmcprLBS90u

PAGE 28TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

REAL-WORLD USE CASES

Use Case Examples

Anomaly detection Identifying unusual patterns in network traffic for cybersecurity, fraud detection, and quality control
in manufacturing

Healthcare diagnostics Disease detection through medical image analysis, patient data analysis, drug discovery, and personalized
treatment plans

Autonomous vehicles Self-driving cars use AI/ML for perception, decision-making, route optimization, and collision avoidance

Financial fraud detection Detecting fraudulent transactions in real-time to prevent financial losses and protect customer data

Energy management Optimizing energy consumption in buildings and industrial facilities for cost savings and
environmental sustainability

Customer support AI-powered chatbots, virtual assistants, and sentiment analysis for automated customer support, inquiries,
and feedback analysis

Supply chain optimization Inventory management, demand forecasting, and route optimization for efficient logistics and
supply chain operations

Agriculture and farming Crop monitoring, precision agriculture, pest detection, and yield prediction for sustainable
farming practices

Language understanding Advanced language models for understanding and generating human-like text, enabling content
generation and context-aware applications

Medical research Drug discovery, genomics analysis, disease modeling, and clinical trial optimization to accelerate
medical advancements

Example: Implementing Kubernetes and AI/ML
As an example, let's introduce a real-world scenario: a medical research system. The main purpose is to investigate and find the
cause of Parkinson's disease. The system analyzes graphics (tomography data and images) and personal patient data (which
allows the use of the data). The following is a simplified, high-level example:

Figure 1: Parkinson's disease medical research architecture

PAGE 29TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

The architecture contains the following steps and components:

1. Data collection – gathering various data types, including structured, unstructured, and semi-structured data like logs,
files, and media, in Azure Data Lake Storage Gen2

2. Data processing and analysis – utilizing Azure Synapse Analytics, powered by Apache Spark, to clean, transform, and
analyze the collected datasets

3. Machine learning model creation and training – employing Azure Machine Learning, integrated with Jupyter notebooks,
for creating and training ML models

4. Security and authentication – ensuring data and ML workload security and authentication through the Key Cloak
framework and Azure Key Vault

5. Container management – managing containers using Azure Container Registry

6. Deployment and management – using Azure Kubernetes Services to handle ML model deployment, with management
facilitated through Azure VNets and Azure Load Balancer

7. Model performance evaluation – assessing model performance using log metrics and monitoring provided by Azure Monitor

8. Model retraining – retraining models as required with Azure Machine Learning

Now, let's examine security and how it lives in Kubernetes and AI/ML.

Data Analysis and Security in Kubernetes
In Kubernetes, data analysis involves processing and extracting insights from large datasets using containerized applications.
Kubernetes simplifies data orchestration, ensuring data is available where and when needed. This is essential for machine
learning, batch processing, and real-time analytics tasks.

Kubernetes ML analyses require a strong security foundation, and robust security practices are essential to safeguard data in
AI/ML and Kubernetes environments. This includes data encryption at rest and in transit, access control mechanisms, regular
security audits, and monitoring for anomalies. Additionally, Kubernetes offers features like role-based access control (RBAC)
and network policies to restrict unauthorized access.

To summarize, here is a AL/ML for Kubernetes security checklist:

 Access control

 Set RBAC for user permissions

 Create dedicated service accounts for ML workloads

 Apply network policies to control communication

 Image security

 Only allow trusted container images

 Keep container images regularly updated and patched

 Secrets management

 Securely store and manage sensitive data (Secrets)

 Implement regular Secret rotation

 Network security

 Segment your network for isolation

 Enforce network policies for Ingress and egress traffic

 Vulnerability scanning

 Regularly scan container images for vulnerabilities

Last but not least, let's look into distributed ML in Kubernetes.

Distributed Machine Learning in Kubernetes
Security is an important topic; however, selecting the proper distributed ML framework allows us to solve many problems.
Distributed ML frameworks and Kubernetes provide scalability, security, resource management, and orchestration capabilities
essential for efficiently handling the computational demands of training complex ML models on large datasets.

PAGE 30TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Here are a few popular open-source distributed ML frameworks and libraries compatible with Kubernetes:

• TensorFlow – An open-source ML framework that provides tf.distribute.Strategy for distributed training. Kubernetes
can manage TensorFlow tasks across a cluster of containers, enabling distributed training on extensive datasets.

• PyTorch – Another widely used ML framework that can be employed in a distributed manner within Kubernetes clusters.
It facilitates distributed training through tools like PyTorch Lightning and Horovod.

• Horovod – A distributed training framework, compatible with TensorFlow, PyTorch, and MXNet, that seamlessly integrates
with Kubernetes. It allows for the parallelization of training tasks across multiple containers.

These are just a few of the many great platforms available. Finally, let's summarize how we can benefit from using AI and
Kubernetes in the future.

Conclusion
In this article, we reviewed real-world use cases spanning various domains, including healthcare, recommendation systems,
and medical research. We also went into a practical example that illustrates the application of AI/ML and Kubernetes in a
medical research use case.

Kubernetes and AI/ML are essential together because Kubernetes provides a robust and flexible platform for deploying,
managing, and scaling AI/ML workloads. Kubernetes enables efficient resource utilization, automatic scaling, and fault
tolerance, which are critical for handling the resource-intensive and dynamic nature of AI/ML applications. It also promotes
containerization, simplifying the packaging and deployment of AI/ML models and ensuring consistent environments across all
stages of the development pipeline.

Overall, Kubernetes enhances the agility, scalability, and reliability of AI/ML deployments, making it a fundamental tool in
modern software infrastructure.

Boris Zaikin, Lead Solution Architect at CloudAstro GmbH
@borisza on DZone | @boris-zaikin on LinkedIn

I'm a certified senior software and cloud architect with solid experience designing and developing
complex solutions based on the Azure, Google, and AWS clouds. I have expertise in building distributed
systems and frameworks based on Kubernetes and Azure Service Fabric. My areas of interest include

enterprise cloud solutions, edge computing, high-load applications, multi-tenant distributed systems, and IoT solutions.

https://www.tensorflow.org/guide/distributed_training
https://pytorch.org/docs/stable/index.html
https://horovod.ai/
https://mxnet.apache.org/versions/1.9.1/
https://dzone.com/users/3123245/borisza.html
https://www.linkedin.com/in/boris-zaikin/

PAGE 31TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

Kubernetes security is essential in today's digital landscape. With the increasing adoption of containerization and
microservices, Kubernetes has become the go-to solution for orchestrating and managing containers. However, this also
means that it has become a target for attackers, making Kubernetes security a top priority. The dynamic and complex nature
of Kubernetes requires a proactive and comprehensive approach to security. This involves securing the Kubernetes cluster
itself, the workloads running on it, and the entire CI/CD pipeline. It's important to ensure secure configurations, enforce least
privilege access, isolate workloads, scan for vulnerabilities regularly, and encrypt sensitive data.

This article will serve as a comprehensive guide to Kubernetes security, aimed at helping developers protect their applications
and data.

Important Kubernetes Security
Considerations
Before diving into key security considerations,
it's crucial to understand the architecture. In
Kubernetes, the control plane communicates
with nodes via the Kubernetes API, which the
API server exposes. Nodes use the kubelet
to report back to the control plane and
communicate with etcd to read configuration
details or write new values.

Kubernetes follows a client-server architecture
with two main types of servers: the control
plane and the nodes.

CONTROL PLANE
The control plane (formerly known as the
master node) is responsible for managing the
Kubernetes cluster. It is the entry point for
all administrative tasks. Components of the
control plane include the API server, controller
manager and scheduler, and etcd.

Important security controls for each are as follows:

• API server (kube-apiserver) – Use role-based access control (RBAC) to limit who can access the API server and what
actions they can perform. Enable audit logs to track and analyze every request made to the API server. Use transport layer
security (TLS) for all API server traffic.

• Controller manager (kube-controller-manager) and scheduler (kube-scheduler) – These components should only
be accessible by administrators. Use TLS for connections and ensure they are only accessible over the local network.

• etcd – This is one of the most critical components from a security perspective, as it stores all cluster data. It should be
accessible only by the API server. Protect it with strong access controls and encryption, both in transit and at rest.

NODES
Nodes (formerly known as worker nodes) run the actual workloads. Each node contains the necessary services to manage
networking between containers, communicate with the control plane, and assign resources to containers. Components of a
node include the kubelet, kube-proxy, and container runtime.

Secure the Cluster
A Blazing Kubernetes Developer's Guide

By Akanksha Pathak, Senior Cybersecurity Consultant at Visa, Inc.

Figure 1: Kubernetes cluster with security controls

PAGE 32TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Below are security controls to consider:

• kubelet – The kubelet can be a potential attack surface. Limit API access to the kubelet and use TLS for connections.

• kube-proxy – This component should be secured by ensuring it can only be accessed by the control plane components.

• Container runtime – Ensure you're using secure, up-to-date container images. Regularly scan images for vulnerabilities.
Use Pod Security Admission to limit a container's access to resources.

PODS
 Pods are the smallest deployable units of computing that you can create and manage in Kubernetes. A Pod encapsulates
an application's container (or multiple containers), storage resources, a unique network IP, and options that govern how the
container(s) should run.

The following are security controls to consider:

• Use namespaces to isolate your Pods from each other.

• Implement network policies to control which Pods can communicate with each other.

• Limit the privileges of a Pod to only what it needs to function.

• Use Kubernetes Secrets to manage sensitive information that Pods need to access.

• Ensure your application code is secure. Even the most secure Kubernetes configuration can't protect against
application-level vulnerabilities.

General Guidelines for Kubernetes Security
Let's review some general guidelines for Kubernetes security.

KUBERNETES HARDENING
Kubernetes hardening involves implementing robust security measures — including access control, network policies, audit
logging, and regular updates — to enhance the resilience and protection of Kubernetes clusters against potential threats
and vulnerabilities.

• RBAC – Implement RBAC to regulate access to your Kubernetes API. Assign the least privilege necessary to users, groups,
and service accounts. Kubernetes itself provides RBAC as a built-in mechanism for access control.

• Network policies – Define network policies to dictate which Pods can communicate with each other. This acts as a basic
firewall for your Pods. You can use Project Calico or Cilium for implementing network policies.

• etcd security – Configure etcd peer-to-peer communication and client-to-server communication with mutual TLS.
Enable etcd's built-in authentication and RBAC support.

• Audit logging – Enable audit logging in the API server using the --audit-log-path flag. Define your audit policy to
record the necessary level of detail. Fluentd or Fluent Bit are often used for processing Kubernetes audit logs.

• Update and patch – Regularly apply patches and updates to your Kubernetes components to protect against known
vulnerabilities using the Kubernetes built-in mechanism.

• Admission controllers – Admission controllers are built-in plugins that help govern how the cluster is used. Enable
specific admission controllers like AlwaysPullImages to ensure images are always pulled from the registry, and
DenyEscalatingExec to prevent granting a Pod more privileges than its parent.

DEVSECOPS AND KUBERNETES SECURITY
DevSecOps aims to integrate security practices into the DevOps process. It involves introducing security earlier in the lifecycle
of application development, rather than relying on end-stage security measures. In a Kubernetes environment, DevSecOps
could involve:

• Secure CI/CD pipelines – CI/CD pipelines are commonly used in Kubernetes deployments. A DevSecOps approach
ensures that these pipelines are secure and free of vulnerabilities by integrating security checks and tests at every step of
the pipeline. Use practices like static code analysis, dynamic analysis, and dependency checks at the coding and building
stages.

• Configuration management – Kubernetes configurations can be complex, and misconfigurations can lead to security
vulnerabilities. DevSecOps practices involve managing and reviewing these configurations continuously to ensure
security. Use automated configuration management tools, like Ansible or Terraform, to ensure consistent and secure
configurations. Regularly audit and update configurations as necessary.

https://www.tigera.io/project-calico/
https://cilium.io/
https://etcd.io/
https://www.fluentd.org/
https://fluentbit.io/
https://www.ansible.com/
https://www.terraform.io/

PAGE 33TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

• Image scanning – Container images used in Kubernetes should be scanned for vulnerabilities as part of the CI/CD
pipeline. This is a key DevSecOps practice. Use open-source tools like Clair or Grype to regularly scan your container
images for known vulnerabilities.

• Runtime security – DevSecOps also involves monitoring and securing the application when it's running in the Kubernetes
environment. Implement runtime security through tools that can detect anomalous behavior.

SUPPLY CHAIN SECURITY AND KUBERNETES SECURITY
Supply chain security involves securing the software supply chain — from the components used to build your software to the
infrastructure and processes used to build and deploy it.

In a Kubernetes environment, supply chain security could involve:

• Image assurance – Ensuring that the container images you're using in your Kubernetes deployments are from trusted
sources, not tampered with, and free of known vulnerabilities is critical. Use Docker Content Trust or Notary to sign your
images and verify signatures before deployment. Use private registries like Harbor or Quay, and secure them using TLS
and access controls.

• Dependency management – Kubernetes applications will likely depend on external libraries and components. It's
important to ensure these dependencies are secure and up to date. Regularly audit your dependencies for vulnerabilities
using tools like OWASP Dependency-Check.

• Secure build processes – The tools and processes used to build your application and create your container images need
to be secure. This could involve securing your CI/CD pipelines and using signed images. Use DevOps tools like Jenkins or
CircleCI to ensure they are properly secured and updated.

• Secrets management – Safely manage sensitive information such as API keys, passwords, and certificates. Use
Kubernetes Secrets or external Secret management tools to store and distribute Secrets securely.

GOVERNANCE
Governance in Kubernetes security ensures the implementation of policies, access controls, and best practices, fostering a
secure ecosystem for managing containerized applications and safeguarding sensitive data within Kubernetes clusters.

• Policy review – Regularly review and update your security policies to keep them aligned with the latest security best
practices and compliance requirements. Tools like kube-score or kube-bench (Go application that checks whether
Kubernetes is deployed securely) can be used to assess how well security policies are being followed.

• Documentation – Document all security procedures and ensure your team is aware of them. Use a centralized, version-
controlled repository like GitHub for your documentation.

• Compliance audit – Regularly audit your cluster for compliance with your security policies. Use tools like kube-bench or
kube-score for automated checks.

• Namespaces – Use Kubernetes' built-in namespaces to segregate different projects or teams. Apply RBAC and network
policies at the namespace level to enforce access and communication restrictions.

• Collaborative vendor security – For third-party services or vendors within your Kubernetes ecosystem, ensure they
adhere to robust security practices. Regularly review and validate security protocols to maintain a secure supply chain.

OTHER CONSIDERATIONS
In addition to fundamental security practices, several advanced considerations are vital for a robust Kubernetes security strategy:

• Monitoring – Use a comprehensive monitoring solution like Prometheus or Grafana to monitor your cluster. Set up
alerts for any signs of suspicious activity.

• Incident response – Have an incident response plan in place. This should include steps for identifying, isolating, and
mitigating security incidents. The ELK (Elasticsearch, Logstash, Kibana) or EFK (Elasticsearch, Fluentd, Kibana) stacks
can be used for log management and analysis during incident response.

• Backup – Regularly back up your etcd data using etcd's built-in snapshot feature.

• Resource quotas – Use resource quotas and limit ranges to prevent any one application from consuming too many
cluster resources.

• Service mesh – Consider using a service mesh for additional security and observability features. This can provide
mutual TLS, fine-grained traffic control, and detailed telemetry data. Istio and Linkerd are popular open-source service
mesh implementations.

https://github.com/quay/clair
https://github.com/anchore/grype/
https://goharbor.io/
https://quay.io/
https://owasp.org/www-project-dependency-check/
https://www.jenkins.io/
https://circleci.com/integrations/kubernetes/
https://prometheus.io/
https://grafana.com/
https://istio.io/
https://linkerd.io/

PAGE 34TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Conclusion
Securing Kubernetes is not a one-time effort. As Kubernetes and its ecosystem continue to evolve, so do its security threats.
Because of this, it's important to continuously monitor and adapt your security practices. Conducting regular security audits,
staying updated with the latest Kubernetes version, and training your team on Kubernetes security are all crucial. Moreover, a
strong security culture is key. Everyone involved in the Kubernetes lifecycle — from developers to operators — should be aware
of the security best practices and their responsibilities. Security should be a shared responsibility across the organization.

To summarize, Kubernetes security is essential and requires a continuous, proactive approach. By combining robust security
practices with a strong security culture, organizations can leverage Kubernetes' benefits while minimizing security risks.

Akanksha Pathak, Senior Cybersecurity Consultant at Visa, Inc.
@pathakakanksha on DZone | @akankshapathak1991 on LinkedIn | akankshapathak.com

Akanksha specializes in cloud and application security, TDR, and vulnerability management. As a senior
member of the corporate governance team, she oversees the third-party cybersecurity. Her expertise
lies in managing relationships while also architecting and analyzing application designs. Additionally,

she is an active participant in cybersecurity communities like GIAC Advisory Board and IEEE. View her professional website
to learn more.

https://dzone.com/users/4875176/pathakakanksha.html
https://www.linkedin.com/in/akankshapathak1991/
http://akankshapathak.com
https://pathakakanksha991.wixsite.com/cybersecurity

PAGE 35TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

CONTRIBUTOR INSIGHTS

The financial intricacies of Kubernetes deployments demand more than reactive measures alone. Organizations have a
choice: react to costs as they arise or employ FinOps (financial operations) practices to anticipate and manage expenditures
proactively. Yet the road to efficient Kubernetes FinOps is far from one-dimensional. It's an ever-evolving practice that must
be fine-tuned according to operational realities and architectural demands. If a certain cost model continues to yield returns
without overwhelming resources, perhaps it's due for scaling. Conversely, a recurring budgetary shortfall may signal the need
for an extensive financial overhaul.

In this article, we delve into the multifaceted complexities of a distributed Kubernetes ecosystem and cost implications. We also
discuss the recommended FinOps practices for Kubernetes that offer guidance on their seamless integration into overarching
financial and operational frameworks.

Inherent Complexities of Kubernetes Costs
Venturing into the multi-faceted, distributed landscape of Kubernetes, one soon realizes that its cost dynamics are far from
straightforward. These nuanced cost elements give rise to specific challenges in fiscal oversight that demand targeted
exploration. Some cost management challenges in a Kubernetes ecosystem include cluster distribution, microservices
architecture, resource heterogeneity, multi-tenancy, and compliance and security.

CLUSTER DISTRIBUTION
Traditional, centralized-data-center models are now less relevant. Instead, deploying Kubernetes clusters across multiple
regions and cloud providers is the standard approach. While this aids in high availability and fault tolerance, it introduces
financial nuances as regional variations in resource pricing can skew budget forecasts. The crux of the challenge lies in regional
resource pricing variances and the costs associated with data egress — often hidden fees that only surface when closely
scrutinized. Additionally, latency between clusters can result in performance issues, necessitating more robust — and costly —
solutions to maintain service levels.

MICROSERVICES ARCHITECTURE
Besides being an architectural pivot, microservices can often result in a considerable shift in your expense structure.
Disaggregating a monolith into microservices requires each service needing its own set of resources and policies for
autoscaling, resiliency, and network Ingress/egress. This disintegration amplifies the volume of Pods and containers, each
becoming its own line item on your budget. Service meshes, such as Istio or Linkerd, which are used to facilitate inter-service
communication, add an extra layer of complexity and ultimately lead to higher costs.

RESOURCE HETEROGENEITY
Kubernetes helps you orchestrate a variety of resource types, including VM-based workloads, serverless functions, or managed
databases. The diversity is considered great for performance; however, since each resource type comes with its own pricing
model, the heterogeneity complicates the precise correlation of resource usage and cost allocation. In addition, not all
resources are billed the same way — some might incur costs per request, others per minute or per GB of data transferred. This
fragmentation calls for advanced tagging and granular monitoring tools to demystify your operational expenses.

MULTI-TENANCY
As enterprises scale, the practice of sharing Kubernetes cluster resources among multiple teams or projects — known as
multi-tenancy — becomes more prevalent. While this strategy can be cost-efficient, it raises concerns around security and
isolation. Resource quotas and limits must be set to prevent a noisy neighbor problem, where one team's activities are limited
to consume resources of others. Isolated namespaces can help, but what about shared costs like cluster-level logging or
monitoring? This balancing act ultimately has its own cost implications, making it vital to monitor usage carefully to ensure
equitable distribution of costs among tenants.

Optimizing Kubernetes Costs
With FinOps Best Practices
By Sudip Sengupta, Technical Writer at Javelynn

https://istio.io/
https://linkerd.io/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor

PAGE 36TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

COMPLIANCE AND SECURITY
Operating in a regulated environment adds a recurring financial burden to your Kubernetes setup. Regulations like GDPR and
HIPAA mandate not just encryption but end-to-end data protection measures that extend beyond basic compliance checklists.
These requirements necessitate the adoption of specialized tools, mostly third-party services, designed for secure data
handling, auditing, and logging. Each of these tools or services adds its own cost layer, complicating your FinOps strategy.

Implementing FinOps for Efficient
Finance Governance
When resource heterogeneity and regional
pricing variations complicate the cost equation,
visibility becomes paramount. FinOps bridges the
gap between IT and finance, empowering teams
to derive more value from their cloud spend.

Although the foundational pillars of FinOps center
around financial oversight, resource optimization,
and operational governance, there are several
other factors that strengthen its effectiveness.

The real efficacy of a FinOps strategy lies in its
adaptability to shifting operational landscapes
and its capacity to integrate disparate elements
— be it the heterogeneity of resource types or the
intricacies of compliance requirements.

MONITORING AND VISIBILITY
FinOps advocates for transparent, real-time
reporting that enables you to monitor not just
your total cloud expenditure, but the granular
costs associated with each cluster, node, or even Pod. Real-time monitoring ensures that resource utilization aligns with
allocated budgets and allows for proactive scaling decisions. If a service is consuming resources inefficiently, real-time tracking
provides the intelligence needed to rectify the issue before it escalates into a financial burden.

Adopt advanced tagging and cost allocation methods for attributing costs to specific projects, departments, or teams. Once
metrics are scoped, the next logical step is to delve into the tools built to track them effectively.

The following table lists some open-source FinOps tools. Each tool brings its own set of capabilities and focuses on distinct
metrics that are essential to measure both financial and operational benchmarks. A typical approach is to integrate them
together to form a robust, open-source stack for FinOps in Kubernetes environments.

Table 1

OPEN-SOURCE TOOLS FOR COST TRACKING IN KUBERNETES

Tool Key Features Critical Metrics

Kubecost • Offers visibility into Kubernetes spending
• Tracks CPU, memory, and storage usage
• Compatible with multiple cloud providers

• Cost per namespace
• Cost per Pod
• Cluster efficiency

Grafana • Visualization tool for monitoring data
• Includes cost-dashboards for Kubernetes
• Requires manual setup for financial metrics

• CPU usage
• Memory utilization
• Disk I/O
• Network throughput

Prometheus • Monitoring tool native to Kubernetes
• Captures performance metrics
• Customizable to include financial metrics through

exporters

• Query performance
• Request rate
• Response latency
• Resource consumption

Figure 1: Foundational pillars of FinOps

TABLE CONTINUES ON NEXT PAGE

https://gdpr-info.eu/
https://www.hhs.gov/hipaa/index.html
https://github.com/kubecost
https://grafana.com/
https://prometheus.io/

PAGE 37TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

OPEN-SOURCE TOOLS FOR COST TRACKING IN KUBERNETES

Tool Key Features Critical Metrics

Kubernetes
Operational View

• Provides a read-only system dashboard for Kubernetes
• Useful for tracking resource usage
• Lacks in-depth financial analytics

• Node status
• Pod distribution

Kubernetes
Resource Report

• Reports resource usage
• Helps in identifying over-provisioned resources
• Not as comprehensive for cost calculations

• CPU allocation
• Memory allocation

by service

kube-state-metrics • Exposes raw metrics for Kubernetes objects
• Useful for granular cost allocation
• Requires other tools for visualization and analysis

• Object counts
• Resource quota

Helm plugins • Simplifies allocating costs tags to deployments
and packages

• Estimates the cost implications of rolling back
to a previous deployment

• Deployment history
• Rollbacks
• Release tracking
• Plugin dependencies

RESOURCE OPTIMIZATION
Resource optimization in a FinOps parlance goes beyond simple cost cutting while helping you extract maximum value
from your deployments. Through predictive analytics and continuous performance monitoring, FinOps tools can identify
underutilized resources and suggest consolidation. Achieving optimal financial governance in Kubernetes demands a three-
pronged approach:

• Over-provisioning a container wastes compute cycles, just as under-provisioning can result in sluggish performance.
Consider right-sizing containers and Pods to strike the right balance between cost control and operational efficacy.

• Accumulated idle resources drain budgets without contributing to productivity. Effective management of these
dormant assets recaptures value, streamlining your financial operations.

• Scaling of resources should align with demand curves, ultimately ensuring that you pay only for what you actually use.
Utilize solutions such as Kubernetes' native HorizontalPodAutoscaler or third-party offerings to dynamically adjust
resource allocation.

The following table shows various recommended strategies to optimize resources:

RESOURCE OPTIMIZATION STRATEGIES IN KUBERNETES

Resource Type Cost Driver Unit of Measurement FinOps Optimization Strategies

Nodes Compute power CPU cores, RAM Right-sizing, spot instances

Pods Compute and storage CPU, memory, disk Resource limit/quota settings

Services Network traffic Data transfer Load balancing, caching

Storage Data retention GB, IOPS Dynamic provisioning

Ingress Data traffic Requests/sec Rate limiting, geo-fencing

BUDGET FORECASTING
When it comes to budget forecasting of a Kubernetes setup, the best approach aligns overarching key performance indicators
(KPIs) with granular system metrics. This multi-layered approach enriches your financial strategy, adding depth and detail
to fiscal planning. Kubernetes namespaces serve as effective categorization tools, categorizing your costs to project-level
granularity. Metrics from tools like Prometheus or Grafana can further refine your budget models by providing insights into
resource utilization. This facilitates agile budgeting practices, enabling dynamic allocation of funds to projects based on their
real-time resource consumption.

Perhaps the most pivotal aspect of budget forecasting is the integration of system metrics with business KPIs. Metrics such as
CPU usage, memory allocation, and I/O operations not only indicate system performance but also translate into quantifiable
costs. This integration yields a multi-dimensional financial strategy that accommodates both operational realities and business
objectives. For instance, a KPI focused on maximizing application uptime would directly influence budget allocations toward
fault tolerance and high availability solutions.

https://github.com/hjacobs/kube-ops-view
https://github.com/hjacobs/kube-ops-view
https://github.com/hjacobs/kube-resource-report
https://github.com/hjacobs/kube-resource-report
https://github.com/kubernetes/kube-state-metrics
https://helm.sh/docs/topics/plugins/

PAGE 38TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

GOVERNANCE AND CONTROL
A clear framework of roles and permissions stands at the core of effective financial governance in Kubernetes. Assigning
distinct roles — like developers overseeing deployments within budget confines and financial teams supervising expenditures
— enriches your cost visibility. This built-in structure mitigates the risk of uncontrolled spending.

A role-based approach is further strengthened by implementing resource constraints in Kubernetes, using features like
resource quotas, limit ranges, and network policies. These guardrails help implement "soft" and "hard" limits to prevent
resource overutilization.

Figure 2: Implementing resource constraints

Following the definition of roles and limits, FinOps policies are the pillars upon which everything is built. These hard-coded
guidelines act as the governance playbook, aligning both financial planning and operational strategy. From outlining minimum
security standards to delineating the resource scaling approval process, these policies act as your rulebook for fiscal control.

Conclusion
The success of a FinOps practice in Kubernetes is shaped by various factors, from distributed services and multi-tenancy to
compliance and security. While these complexities bring challenges, they also offer opportunities for refined cost control and
performance optimization.

However, mastering these variables requires a continuous process of calibration and readjustment. This doesn't undermine
the significance of FinOps practices, though. On the contrary, it emphasizes the need to augment them with specialized tools,
granular analytics, and team collaboration. Such a comprehensive stance fosters a culture that prioritizes fiscal prudence,
maximizes efficiency, and innovates in the face of Kubernetes's financial complexities.

Resources:

• The FinOps and MLOps platform by OptScale, GitHub

• "Adopting FinOps Tool for Pod-Level Kubernetes Cost Management" by Asaf Liveanu, CNCF

Sudip Sengupta, Technical Writer at Javelynn
@ssengupta3 on DZone and LinkedIn

Sudip Sengupta is a TOGAF Certified Solutions Architect with more than 18 years of experience working
for global majors such as CSC, Hewlett Packard Enterprise, and DXC Technology. Sudip now works as a
full-time tech writer, focusing on Cloud, DevOps, SaaS, and cybersecurity. When not writing or reading,

he's likely on the squash court or playing chess.

https://github.com/hystax/optscale
https://www.cncf.io/blog/2022/05/11/adopting-finops-tool-for-pod-level-kubernetes-cost-management/
https://dzone.com/users/4337650/ssengupta3.html
https://www.linkedin.com/in/ssengupta3/

PAGE 39TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

ADDITIONAL RESOURCES

Diving Deeper
Into Kubernetes

REFCARDS

Kubernetes Monitoring Essentials: Exploring Approaches
for Monitoring Distributed Kubernetes Clusters
This Refcard presents the primary benefits and challenges of
monitoring Kubernetes. You'll also learn the fundamentals of
building a Kubernetes monitoring framework, such as how to
capture monitoring data insights, leverage core Kubernetes
components for monitoring, identify key metrics, and the
critical Kubernetes components and services to monitor.

Kubernetes Multi-Cluster Management and Governance
Due to the performance nature of modern cloud-native apps,
Kubernetes environments must be highly distributed. Proper
multi-cluster management and governance ensure consistent,
secure operations across all environments. In this Refcard, we
further explore Kubernetes multi-cluster management and
governance, why it's important, and core practices for success.

MULTIMEDIA

Kubernetes Podcast from Google [podcast]
Podcast hosts Fields and Sghiouar invite
guests to discuss anything Kubernetes-related,
from news and updates to history and future
predictions. Guests include industry experts

who have experience with Kubernetes, and special episodes
include KubeCon, Cloud Native Security Con, and more!

Kubernetes Bytes [podcast]
Ryan Wallner's and Bhavin Shah's podcast
focuses on new and hot topics in Kubernetes.
Featuring developers and engineers from
Speedscale, InfluxDB, Redis, Datastax, and

more, you will learn from their challenges and experiences in
the cloud-native ecosystem.

@kubesimplify [YouTube channel]
Saiyam Pathak, a CNCF ambassador, uses his channel to
discuss cloud-native technologies, covering everything from
Secrets and security to open-source tools, Kubernetes deep
dives, and more. Pathak simplifies cloud native for you so that
you don't have to.

Kubernetes Community [YouTube channel and community]
Want to get more involved in Kubernetes? Check out the
official Kubernetes-hosted YouTube channel and community
page for users and contributors. Watch recordings of meetings
for releases, community syncs, testing, APIs, and more. You
can also join the community to keep up to date with the latest
news and attend meet ups to engage with fellow devs.

TREND REPORTS

Containers: Modernization and
Advancements in Cloud-Native
Development
In DZone's 2023 Containers Trend Report,
we explore the current state of containers,
key trends and advancements in global

containerization strategies, and constructive content for
modernizing your software architecture. This is examined
through DZone-led research, expert community articles,
and other helpful resources for designing and building
containerized applications.

Kubernetes in the Enterprise: Container
Management Reimagined
DZone's 2022 Kubernetes in the Enterprise
Trend Report provides insights into how
developers are leveraging Kubernetes in their
organizations. It focuses on the evolution of

Kubernetes beyond container orchestration, advancements
in Kubernetes observability, Kubernetes in AI/ML, and more.
Our goal is to help inspire developers to leverage Kubernetes
in their own organizations.

DZONE EVENT STREAMS

Tame the Chaos: Make Multi-Cloud Management Secure
and Cost Effective [Fireside Chat]
As the number of Kubernetes cloud and cluster deployments
proliferates, organizations are experiencing the pain of
managing disparate environments. When cluster sprawl
is left unchecked, it can introduce all kinds of complexity
and excessive cost. This Fireside Chat discusses how to
achieve standardization, security, and performance through
declarative APIs and GitOps, and more.

Containers: Modernization and Advancements in Cloud-
Native Development [Virtual Roundtable]
The need to efficiently manage and monitor containerized
environments remains a crucial task for teams. This Virtual
Roundtable discusses core strategies and principles for
securing container environments, how to tackle the biggest
changes and challenges facing containers and cloud-native
development today, and the IaC-containers relationship.

mailto:https://dzone.com/refcardz/monitoring-kubernetes?subject=
mailto:https://dzone.com/refcardz/kubernetes-multi-cluster-management-and-governance?subject=
https://kubernetespodcast.com/
https://open.spotify.com/show/1k27TNOaz4g2mo031wzAlt
https://www.youtube.com/@kubesimplify
https://youtube.com/@KubernetesCommunity
https://kubernetes.io/community/
https://kubernetes.io/community/
https://dzone.com/trendreports/containers-2
https://dzone.com/trendreports/kubernetes-in-the-enterprise-1
https://dzone.com/events/video-library/tame-the-chaos-make-multi-cloud-management-secure-and-cost-effective
https://dzone.com/events/video-library/containers-modernization-and-advancements-in-cloud-native-development
https://dzone.com/events/video-library/containers-modernization-and-advancements-in-cloud-native-development
https://dzone.com/trendreports/containers-2
https://dzone.com/trendreports/kubernetes-in-the-enterprise-1
https://dzone.com/events/video-library/tame-the-chaos-make-multi-cloud-management-secure-and-cost-effective
https://dzone.com/events/video-library/containers-modernization-and-advancements-in-cloud-native-development
https://dzone.com/refcardz/monitoring-kubernetes
https://dzone.com/refcardz/kubernetes-multi-cluster-management-and-governance
https://kubernetespodcast.com/
https://open.spotify.com/show/1k27TNOaz4g2mo031wzAlt
https://www.youtube.com/@kubesimplify

PAGE 40TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

Solutions Directory

ADDITIONAL RESOURCES

This directory contains Kubernetes and cloud-native tools to assist with deployment, management,
monitoring, and cost optimization. It provides pricing data and product category information gathered from
vendor websites and project pages. Solutions are selected for inclusion based on several impartial criteria,
including solution maturity, technical innovativeness, relevance, and data availability.

DZONE'S 2023 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Ambassador
Labs

Edge Stack API Gateway Kubernetes-native API gateway Free tier
getambassador.io/products/edge-
stack/api-gateway

Kasten by
Veeam

Kasten K10
Kubernetes backup and cloud-native
data management

Trial period kasten.io/product

Kubestr
Discover, validate, and evaluate
Kubernetes storage options

Open source kubestr.io

Platform9
Platform9 Managed
Kubernetes (PMK)

Kubernetes for AI/ML projects for on-
prem and colocation infrastructure

By request
platform9.com/managed-
kubernetes

Teleport Teleport Access Platform Secure infrastructure access Open source goteleport.com/kubernetes-access

Company Product Purpose Availability Website

Amazon Web
Services

Amazon EKS Distro
Kubernetes distribution built and
maintained by AWS

Open source aws.amazon.com/eks/eks-distro

Amazon Elastic Container
Service

Containers as a Service

By request

aws.amazon.com/ecs

Amazon Elastic
Kubernetes Service (EKS)

Managed service to run Kubernetes
on AWS and on-prem

aws.amazon.com/eks

AWS Fargate Serverless compute for containers aws.amazon.com/fargate

Anchore

Anchore Enterprise Software supply chain management Trial period anchore.com

Grype
Vulnerability scanning for container
images and filesystems

Open source github.com/anchore/grype

Aqua Security

Aqua CNAPP Cloud-native security platform By request
aquasec.com/aqua-cloud-native-
security-platform

kube-bench
Kubernetes compliance check with
CIS benchmark

Open source
github.com/aquasecurity/kube-
bench

Argo
Argo CD

Declarative, GitOps continuous
delivery tool Open source

argoproj.github.io/cd

Argo Workflows Kubernetes-native workflow engine argoproj.github.io/workflows

Backstage Backstage Build developer portals Open source backstage.io

Buildpacks Cloud Native Buildpacks
Code transformation to create OCI-
compliant containers

Open source buildpacks.io

Canonical Juju
Orchestration engine for
software operators

Open source juju.is

CAST AI CAST AI
Kubernetes automation, optimization,
security, and cost management

Free tier cast.ai

Chaos Mesh Chaos Mesh
Cloud-native chaos
engineering platform

Open source chaos-mesh.org

Chronosphere Chronosphere Cloud-native observability By request chronosphere.io

20
23

 P
A

R
TN

E
R

S

https://www.getambassador.io/products/edge-stack/api-gateway
https://www.getambassador.io/products/edge-stack/api-gateway
http://kasten.io/product
http://kubestr.io
http://platform9.com/managed-kubernetes
http://platform9.com/managed-kubernetes
http://goteleport.com/kubernetes-access
http://aws.amazon.com/eks/eks-distro
http://aws.amazon.com/ecs
http://aws.amazon.com/eks
http://aws.amazon.com/fargate
http://anchore.com
http://github.com/anchore/grype
http://aquasec.com/aqua-cloud-native-security-platform
http://aquasec.com/aqua-cloud-native-security-platform
http://github.com/aquasecurity/kube-bench
http://github.com/aquasecurity/kube-bench
http://argoproj.github.io/cd
http://argoproj.github.io/workflows
http://backstage.io
http://buildpacks.io
http://juju.is
http://cast.ai
http://chaos-mesh.org
http://chronosphere.io

PAGE 41TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

DZONE'S 2023 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Cilium

Cilium
eBPF-based networking,
observability, security

Open source

cilium.io

Hubble
Network, service, and security
observability for Kubernetes

github.com/cilium/hubble

Circle Internet
Services

CircleCI CI/CD platform Free tier circleci.com

CloudBees CloudBees CI
Cloud-native solution for CI
delivery at scale

By request
docs.cloudbees.com/docs/
cloudbees-ci

CloudEvents CloudEvents
Specification for describing event
data in a common way

Open source cloudevents.io

CNI CNI Networking for Linux containers Open source cni.dev

Cockroach Labs CockroachDB Distributed SQL database Free tier cockroachlabs.com

containerd containerd Industry-standard container runtime Open source containerd.io

Contour Contour Kubernetes Ingress controller Open source projectcontour.io

Couchbase Autonomous Operator Containerized Couchbase Free
couchbase.com/products/cloud/
kubernetes

CRI-O CRI-O Lightweight container runtime Open source cri-o.io

Crossplane Crossplane
Cloud-native control plane
framework

Open source crossplane.io

Crowdstrike
Falcon LogScale Humio
Operator

Automate provisioning,
management, and operations

Open source github.com/humio/humio-operator

CubeFS CubeFS
Cloud-native unstructured
data storage

Open source cubefs.io

D2iQ

D2iQ Kubernetes Platform Kubernetes platform

Trial period

d2iq.com/kubernetes-platform

DKP Edge/IoT Kubernetes platform d2iq.com/products/edge_iot

DKP Enterprise Kubernetes platform d2iq.com/products/enterprise

DKP Essential Kubernetes platform d2iq.com/products/essential

Kaptain AI/ML Kubernetes platform d2iq.com/products/kaptain

Datadog Container Monitoring
Monitor and secure containerized
environments

Free tier
datadoghq.com/product/container-
monitoring

Diamanti

Ultima Accelerator
Kubernetes distribution, storage,
security, and I/O acceleration

By request
diamanti.com/products/ultima-
accelerator

Ultima Enterprise
Deploy, operate, and scale
Kubernetes

Trial period
diamanti.com/products/ultima-
enterprise

DigitalOcean DigitalOcean Kubernetes Managed Kubernetes clusters By request
digitalocean.com/products/
kubernetes

Docker
Docker Container platform

Free tier
docker.com

Docker Scout Container development security docker.com/products/docker-scout

Envoy Envoy Proxy
Edge and service proxy for
cloud-native apps

Open source envoyproxy.io

etcd etcd Distributed key-value store Open source etcd.io

F5

Aspen Service Mesh Istio-based service mesh By request
f5.com/products/aspen-service-
mesh

NGINX Ingress Controller
Kubernetes-native API gatways, load
balancers, and Ingress controllers

Trial period
nginx.com/products/nginx-ingress-
controller

http://cilium.io
http://github.com/cilium/hubble
http://circleci.com
http://docs.cloudbees.com/docs/cloudbees-ci
http://docs.cloudbees.com/docs/cloudbees-ci
http://cloudevents.io
http://cni.dev
http://cockroachlabs.com
http://containerd.io
http://projectcontour.io
http://couchbase.com/products/cloud/kubernetes
http://couchbase.com/products/cloud/kubernetes
http://cri-o.io
http://crossplane.io
http://github.com/humio/humio-operator
http://cubefs.io
http://d2iq.com/kubernetes-platform
http://d2iq.com/products/edge_iot
http://d2iq.com/products/enterprise
http://d2iq.com/products/essential
http://d2iq.com/products/kaptain
http://datadoghq.com/product/container-monitoring
http://datadoghq.com/product/container-monitoring
http://diamanti.com/products/ultima-accelerator
http://diamanti.com/products/ultima-accelerator
http://diamanti.com/products/ultima-enterprise
http://diamanti.com/products/ultima-enterprise
http://digitalocean.com/products/kubernetes
http://digitalocean.com/products/kubernetes
http://docker.com
http://docker.com/products/docker-scout
http://envoyproxy.io
http://etcd.io
http://f5.com/products/aspen-service-mesh
http://f5.com/products/aspen-service-mesh
http://nginx.com/products/nginx-ingress-controller
http://nginx.com/products/nginx-ingress-controller

PAGE 42TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

DZONE'S 2023 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Fairwinds Fairwinds Insights Kubernetes security and governance Free tier fairwinds.com/insights

Falco Falco Cloud-native security tool Open source falco.org

Fluent Bit Fluent Bit End-to-end observability pipeline Open source fluentbit.io

Flux
Flagger

Kubernetes progressive
delivery operator Open source

flagger.app

Flux Kubernetes continuous delivery fluxcd.io

Google Cloud
Google Kubernetes
Engine (GKE)

Scalable and fully automated
Kubernetes service

Trial period
cloud.google.com/kubernetes-
engine

Grafana Labs Grafana Cloud Analytics and monitoring tool Free tier grafana.com/products/cloud

Harbor Harbor
Manage artifacts across cloud-native
compute platforms

Open source goharbor.io

harvesterhci.io Harvester
Cloud-native hyperconverged
infrastructure

Open source harvesterhci.io

HashiCorp Terraform
Automated configuration
management tool

Open source terraform.io

Helm Helm Package manager for Kubernetes Open source helm.sh

Horovod Horovod
Distributed deep learning
training framework

Open source horovod.ai

IBM Cloud Kubernetes Service Managed Kubernetes platform Trial period ibm.com/cloud/kubernetes-service

Istio Istio Service mesh for Kubernetes Open source istio.io

Jenkins X Jenkins X
Cloud-native CI/CD built on
Kubernetes

Open source jenkins-x.io

K3s K3s
Kubernetes distribution for IoT and
edge computing

Sandbox k3s.io

Kanister Kanister
Framework for app-level data
management on Kubernetes

Open source kanister.io

KEDA KEDA
Kubernetes-based, event-driven
autoscaler

Open source keda.sh

Keptn Keptn
Cloud-native application
lifecycle orchestration

Open source lifecycle.keptn.sh

Knative Knative
Serverless and event-driven
app development

Open source knative.dev

Kong

Ingress Controller
Kubernetes-native API
management

Trial period
konghq.com/products/kong-
ingress-controller

Kong Mesh
Service mesh that runs on
Kubernetes and VMs

By request konghq.com/products/kong-mesh

KubeEdge KubeEdge
Kubernetes-native edge
computing framework

Open source kubeedge.io

Kubernetes Kubernetes Container orchestration Open source kubernetes.io

KubeVirt KubeVirt
Build virtualization APIs
for Kubernetes

Open source kubevirt.io

Kuma Kuma
Envoy service mesh for distributed
service connectivity

Open source kuma.io

Kyverno Kyverno
Kubernetes-native policy
management

Open source kyverno.io

Lacework Polygraph® Data Platform Data-driven CNAPP By request lacework.com/platform

http://fairwinds.com/insights
http://falco.org
http://fluentbit.io
http://flagger.app
http://fluxcd.io
http://cloud.google.com/kubernetes-engine
http://cloud.google.com/kubernetes-engine
http://grafana.com/products/cloud
http://goharbor.io
http://harvesterhci.io
http://terraform.io
http://helm.sh
http://horovod.ai
http://ibm.com/cloud/kubernetes-service
http://istio.io
http://jenkins-x.io
http://k3s.io
http://kanister.io
http://keda.sh
http://lifecycle.keptn.sh
http://knative.dev
http://konghq.com/products/kong-ingress-controller
http://konghq.com/products/kong-ingress-controller
http://konghq.com/products/kong-mesh
http://kubeedge.io
http://kubernetes.io
http://kubevirt.io
http://kuma.io
http://kyverno.io
http://lacework.com/platform

PAGE 43TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

DZONE'S 2023 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Linkerd Linkerd Service mesh for Kubernetes Open source linkerd.io

Longhorn Longhorn
Cloud-native distributed block
storage for Kubernetes

Open source longhorn.io

Microsoft Azure
Azure Kubernetes
Service (AKS)

Managed Kubernetes platform Trial period
azure.microsoft.com/en-us/
products/kubernetes-service

Mirantis

Mirantis Container Cloud
Container infrastructure
management

Trial period
mirantis.com/software/mirantis-
container-cloud

Mirantis Container
Runtime

Industry-standard container runtime By request
mirantis.com/software/container-
runtime

Mirantis Kubernetes
Engine

Enterprise container platform Trial period
mirantis.com/software/mirantis-
kubernetes-engine

Mirantis Secure Registry Enterprise container registry By request
mirantis.com/software/mirantis-
secure-registry

New Relic Pixie Kubernetes observability Free tier
newrelic.com/platform/kubernetes-
pixie

Notary Notary
Specs and tools for software supply
chain security

Open source notaryproject.dev

Nutanix Kubernetes Engine Kubernetes management platform By request
nutanix.com/products/kubernetes-
engine

Okteto
Cloud Development
Environments

Developer experience platform Free tier
okteto.com/development-
environments

Ondat Ondat Data mesh for block storage Open source docs.ondat.io

Open Policy
Agent

Open Policy Agent Policy engine Open source openpolicyagent.org

Operator
Framework

Operator Framework
Toolkit to manage Kubernetes-
native apps

Open source operatorframework.io

Oracle

Cloud Infrastructure (OCI) Cloud-native services and software

Free tier

oracle.com/cloud

OCI Container Engine
for Kubernetes

Managed Kubernetes service
oracle.com/cloud/cloud-native/
container-engine-kubernetes

OCI Service Mesh
Managed service mesh for cloud-
native apps

Free
oracle.com/cloud/cloud-native/
service-mesh

Palo Alto Prisma Cloud CNAPP By request paloaltonetworks.com/prisma/cloud

PlanetScale Vitess Operator Kubernetes operator for Vitess Open source
github.com/planetscale/vitess-
operator

Portainer Portainer Container management platform Trial period portainer.io

Portworx

Backup
Kubernetes backup and
data protection

Free portworx.com/products/px-backup

Data Services Kubernetes DBaaS platform

By request

portworx.com/products/portworx-
data-services

Enterprise Kubernetes storage platform
portworx.com/products/portworx-
enterprise

Prometheus Prometheus
Cloud-native monitoring
and alerting

Open source prometheus.io

Rafay
Kubernetes Operations
Platform

Kubernetes automation for
platform teams

Trial period rafay.co

Rancher Rancher Kubernetes management Free tier rancher.com/products/rancher

http://linkerd.io
http://longhorn.io
http://azure.microsoft.com/en-us/products/kubernetes-service
http://azure.microsoft.com/en-us/products/kubernetes-service
http://mirantis.com/software/mirantis-container-cloud
http://mirantis.com/software/mirantis-container-cloud
http://mirantis.com/software/container-runtime
http://mirantis.com/software/container-runtime
http://mirantis.com/software/mirantis-kubernetes-engine
http://mirantis.com/software/mirantis-kubernetes-engine
http://mirantis.com/software/mirantis-secure-registry
http://mirantis.com/software/mirantis-secure-registry
http://newrelic.com/platform/kubernetes-pixie
http://newrelic.com/platform/kubernetes-pixie
http://notaryproject.dev
http://nutanix.com/products/kubernetes-engine
http://nutanix.com/products/kubernetes-engine
http://okteto.com/development-environments
http://okteto.com/development-environments
http://docs.ondat.io
http://openpolicyagent.org
http://operatorframework.io
http://oracle.com/cloud
http://oracle.com/cloud/cloud-native/container-engine-kubernetes
http://oracle.com/cloud/cloud-native/container-engine-kubernetes
http://oracle.com/cloud/cloud-native/service-mesh
http://oracle.com/cloud/cloud-native/service-mesh
http://paloaltonetworks.com/prisma/cloud
http://github.com/planetscale/vitess-operator
http://github.com/planetscale/vitess-operator
http://portainer.io
http://portworx.com/products/px-backup
http://portworx.com/products/portworx-data-services
http://portworx.com/products/portworx-data-services
http://portworx.com/products/portworx-enterprise
http://portworx.com/products/portworx-enterprise
http://prometheus.io
http://rafay.co
http://rancher.com/products/rancher

PAGE 44TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

DZONE'S 2023 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

Red Hat

Ansible
Automated configuration
management tool

Free tier ansible.com

OpenShift
Build, modernize, and deploy
apps at scale

By request
redhat.com/en/technologies/cloud-
computing/openshift

OpenShift Container
Platform

Build and scale containerized
applications Trial period

redhat.com/en/technologies/cloud-com
puting/openshift/container-platform

Quay Container registry quay.io

Quay Clair
Parse image contents and report
vulnerabilities

Open source github.com/quay

Release
Technologies

Release Delivery Container-based EaaS platform By request
prod.releasehub.com/product/
release-delivery

Replicated Replicated Platform
Kubernetes app delivery
and management

Trial period replicated.com

Rook Rook Cloud-native storage orchestration Open source rook.io

Snyk Container Container and Kubernetes security Free tier
snyk.io/product/container-
vulnerability-management

Solo.io Gloo Platform
Unified application networking
for APIs

Trial period solo.io/products/gloo-platform

SPIFFE

SPIFFE
Identify and secure communications
between app services

Open source

spiffe.io

SPIRE
API toolchain for trust-building
between software systems

github.com/spiffe/spire

Spot by NetApp

CloudCheckr Cloud cost management

By request

cloudcheckr.com

Ocean
Serverless infrastructure
container engine

spot.io/product/ocean

Stackwatch Kubecost Kubernetes cost optimization Free tier kubecost.com

Sumo Logic Sumo Logic Cloud-native SaaS analytics Free tier sumologic.com

SUSE NeuVector Container security platform By request suse.com/neuvector

Sysdig Sysdig Platform CNAPP By request sysdig.com/products/platform

TensorFlow TensorFlow Create production-grade ML models Open source tensorflow.org

The Linux
Foundation

PyTorch
Optimized tensor library for
deep learning

Open source pytorch.org

Tigera

Calico Cloud
Security for containers
and Kubernetes

Trial period
tigera.io/tigera-products/calico-
cloud

Calico Enterprise Zero trust security for Kubernetes By request
tigera.io/tigera-products/calico-
enterprise

Calico Open Source
Networking and security for
containers and Kubernetes

Open source tigera.io/tigera-products/calico

Traefik Labs Traefik Enterprise Unified API gateway and Ingress Trial period traefik.io/traefik-enterprise

Trilio Kubernetes Backup
Kubernetes backup and recovery
for on-prem or cloud

By request
trilio.io/products/kubernetes-
backup-and-recovery

Vitess Vitess
Database clustering system for
horizontal scaling of MySQL

Open source vitess.io

http://ansible.com
http://redhat.com/en/technologies/cloud-computing/openshift
http://redhat.com/en/technologies/cloud-computing/openshift
http://redhat.com/en/technologies/cloud-com puting/openshift/container-platform
http://redhat.com/en/technologies/cloud-com puting/openshift/container-platform
http://quay.io
http://github.com/quay
http://prod.releasehub.com/product/release-delivery
http://prod.releasehub.com/product/release-delivery
http://replicated.com
http://rook.io
http://snyk.io/product/container-vulnerability-management
http://snyk.io/product/container-vulnerability-management
http://solo.io/products/gloo-platform
http://spiffe.io
http://github.com/spiffe/spire
http://cloudcheckr.com
http://spot.io/product/ocean
http://kubecost.com
http://sumologic.com
http://suse.com/neuvector
http://sysdig.com/products/platform
http://tensorflow.org
http://pytorch.org
http://tigera.io/tigera-products/calico-cloud
http://tigera.io/tigera-products/calico-cloud
http://tigera.io/tigera-products/calico-enterprise
http://tigera.io/tigera-products/calico-enterprise
http://tigera.io/tigera-products/calico
http://traefik.io/traefik-enterprise
http://trilio.io/products/kubernetes-backup-and-recovery
http://trilio.io/products/kubernetes-backup-and-recovery
http://vitess.io

PAGE 45TREND REPORT | KUBERNETES IN THE ENTERPRISE© 2023 DZONE

DZONE'S 2023 KUBERNETES IN THE ENTERPRISE SOLUTIONS DIRECTORY

Company Product Purpose Availability Website

VMWare Tanzu

Build Service
Automate container creation,
management, governance

By request

tanzu.vmware.com/build-service

Kubernetes Grid Kubernetes runtime tanzu.vmware.com/kubernetes-grid

Kubernetes Operators
Automated Kubernetes platform
operations

tanzu.vmware.com/kubernetes-
operations

Service Mesh
E2E connectivity, security, and
insights for modern apps

tanzu.vmware.com/service-mesh

Volcano Volcano
Cloud-native batch scheduling
system for Kubernetes

Open source volcano.sh

Weaveworks Weave GitOps Enterprise Docker, Oracle, SQL Server containers By request weave.works/product/gitops-enterprise

Windocks Windocks SQL Server containers Free tier windocks.com

Visit Daniel's DZone profile for more comics!

http://tanzu.vmware.com/build-service
http://tanzu.vmware.com/kubernetes-grid
http://tanzu.vmware.com/kubernetes-operations
http://tanzu.vmware.com/kubernetes-operations
http://tanzu.vmware.com/service-mesh
http://volcano.sh
http://weave.works/product/gitops-enterprise
http://windocks.com
https://dzone.com/users/1189863/Daniel+Stori.html

At DZone, we foster a collaborative environment that empowers developers and tech professionals
to share knowledge, build skills, and solve problems through content, code, and community. We
thoughtfully — and with intention — challenge the status quo and value diverse perspectives so that,
as one, we can inspire positive change through technology.

Copyright © 2023 DZone. All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by means of electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

3343 Perimeter Hill Dr, Suite 100
Nashville, TN 37211
888.678.0399 | 919.678.0300

